Technical Manual

Hardware
 Z-100 Series Computers

593-0038-04 CONSISTS OF

MANUAL

595-2918-04
FLYSHEET 597-2792-04

TAB SET (VOL. I)

 597-3437TAB SET (VOL. II) 597-3438

SCHEMATIC ENVELOPES 597-2918-02

MAIN BOARD SCHEMATIC

 585-0018-02VIDEO LOGIC SCHEMATIC
585-0019-01
VIDEO DEFLECTION SCHEMATIC 585-0020-01

FLOPPY CONTROLLER SCHEMATIC 585-0021-02

This Document was scanned and contributed by:

Tharry A. Allatzuan

About These Manuals

This technical manual set for the H/Z-100 Series of Desktop Computers (Low-Profile and All-in-One) is divided into a number of volumes for easy handling and quick reference.

- Hardware Volumes 1 and 2 - These two volumes contain disassembly information, module definitions, user options, theory of operation and programming information (of the hardware), parts lists, and schematics for your computer.
- Hardware Appendices - This volume contains reprints from various manufacturers and includes the S-100 bus specifications, IC data sheets and the IAPX 88 Book. Place this last item in this binder as it includes the 8088 architecture and instruction set.
- ROM Source listings - These volumes are printouts of the source code used in the various boot (monitor) ROM's that can be part of your system.

We have made every effort to give you up-to-date information in these volumes and it was considered to be correct at the time it was written. However, Zenith Data Systems Corporation may alter the products described herein from time to time and these changes may or may not be reflected in this publication. Zenith Data Systems Corporation reserves the right to make these changes without incurring any obligation to incorporated new features in products previously sold.
Chapter 1 General Information
Introduction 1.1
System Description 1.2
Disassembly 1.7
Chapter 2 Main Board
Description 2.2
User Options and Jumpers 2.3
Programming Information 2.6
Theory of Operation 2.19
Circuit Description 2.23
Parts List 2.92
Semiconductor Identification 2.95
Circuit Board X-Ray View 2.136
Interconnect Pin Definitions 2.137
Chapter 3 Keyboard Encoder
Description 3.2
User Options and Programming 3.3
Theory of Operation 3.8
Troubleshooting 3.10
Keyboard Scan Matrix 3.11
Encoder Output Codes 3.12
Keyboard Key Layout 3.19
Chapter 4 Video Logic Board
Description 4.2
User Options and Jumpers 4.3
Theory of Operation 4.5
Programming Data 4.29
Circuit Description 4.48
Troubleshooting 4.69
Parts List 4.70
Semiconductor Indentification 4.72
Circuit Board X-Ray View 4.106
Interconnect Pin Definitions 4.107

CONTENTS

Chapter 5 Video Deflection Board
Circuit Description 5.2
Troubleshooting 5.4
Recalibration 5.5
Parts List 5.8
Circuit Board X-Ray View 5.11
Chapter 6 Floppy Disk Controller
Description 6.2
User Options 6.3
Programming Data 6.7
Theory of Operation 6.21
Circuit Description 6.23
Troubleshooting 6.32
Calibration 6.34
Parts List 6.38
Semiconductor Identification 6.39
Circuit Board X-Ray View 6.49
Interconnect Pin and Signal Definitions 6.50
Chapter 7Floppy Disk Drives
Description 7.2
Programming 7.3
Cable Connections 7.5
Operation 7.6
Chapter 8Power Supply
Power Line Considerations 8.2
Specifications 8.3
Chapter 9 Chassis, Cabinet, and Cables
Parts Lists 9.2
Cables Location/Description 9.12
Circuit Boards \& Hardware 9.17

CONTENTS

Chapter 10Programming DataDescription 10.2
General Information 10.3
Devices Permitting User Programming 10.10
Port Addresses 10.11
Z-DOS Initialization Sequence 10.14
ASCII Chart 10.30
Escape Codes 10.38
Definitions 10.42
Key Code Chart 10.52
Keypad Code Chart 10.59
Function Key Code Chart 10.60
Chapter 11 AddendumsIndex

Introduction

The Z-100 Series Desktop Computers (Low-Profile and All-inOne Models) are a series of profession computers that easily handle demanding computer tasks. Advanced state-of-the-art digital electronics and unique engineering concepts have been combined to form a truly exceptional and versatile family of computers.

Features of the Z-100 Series include:

- automatic selection on bootup of either an 8-bit processor (Intel 8085) or 16 -bit processor (Intel 8088) allowing use of software for either.
- up to $3 / 4$ megabyte of user addressable memory (RAM).
- an S-100 IEEE 696 standard bus with five slots for expansion.
- two RS-232 serial input/output ports.
- one parallel output port for Centronics-type devices.
- dynamically definable character set.
- high resolution pixel oriented (bit mapped) graphics for either color (8 colors) or monochrome (8 intensity levels) displays.
- a floppy disk controller that supports both 5.25 -inch and 8 -inch soft-sectored disk drives (single- or double-sided, single- or double-density, and 48- or 96-tpi, 5.25-inch drives).

These features, along with Zenith's commitment to quality, will give you a high-performance, dependable computer for many years to come.

GENERAL INFORMATION

System Description

The Z-100 Series All-in-One and Low-Profile Computers provides expandability; 8088, 8086, and 8080 code compatibility; and a 5 MHz clock for computing power.

Expandability is provided through a 5-slot backplane on the main board. This allows you to expand your system with Heath/Zenith Data Systems peripherals and options or IEEE 696 standard S-100 cards from outside suppliers.

Code compatibility is provided through the use of an 8-bit processor (an Intel 8085) for 8080 code, and a 16-bit processor (an Intel 8088) for 8086 and 8088 code. The 8 -bit processor allows you to use many of the large number of 8 -bit code packages that run under the popular $\mathrm{CP} / \mathrm{M}^{(}$operating system. The 16-bit processor allows you to utilize many of the 16-bit software packages that are rapidly becoming available for CP/M-86 ${ }^{(\pi)}$ and MS ${ }^{(\pi)}$-DOS.

The 5 MHz clock provides high performance from both the 8088 and 8085 processors and will allow you to realize higher capabilities in input/output power than previously possible on limited 8 -bit systems running under slower clocks.

GENERAL INFORMATION

System Description

System Modules

Refer to Pictorial 1-1 for the following discussion.

Power Supply

The power supply is an on line, switching power supply, providing $+12 \mathrm{VDC},-12 \mathrm{VDC},+5 \mathrm{VDC}$, and -5 VDC . It is cooled by an internal fan and is protected from overvoltage, undervoltage, overcurrent, and overtemperature operation. This power supply is not serviceable.

Pictorial 1-1. System Block Diagram

GENERAL INFORMATION

System Description

Main Board

The main circuit board contains the two processors, an 8085 and an 8088, (CPU's-referred to as the master processors); the 5 -slot backplane with an S-100 IEEE 696 bus; capacity for 3 banks of 64 K devices for user memory, up to 192K; 8041A keyboard processor and connections for the keyboard; two RS-232 serial interfaces and connectors, one parallel interface and connector, and interface with the video board.

The CPU's control the timing, addressing, and generation of control signals for the computer. In addition, switches and jumpers on the main board control autobooting, vertical scan frequency, interfacing for the serial ports, and PROM size (8, 16 , or $32 \mathrm{~K} \times 8$).

Temporary master processors on cards plugged into the backplane slots can directly access the memory and peripheral ports of the system. They cannot, however, access the interrupt controllers for the two master processors, the high order address latch, or the processor swap port (these can only be accessed by the master processors on the main board - the 8085 and 8088).

128 K of user memory on the main board is supplied in the standard configuration, however 192K is supplied for some systems, which is required for Winchester operation and some application packages. Associated circuitry provides parity checking and refresh cycles.

GENERAL INFORMATION

System Description

Video Circuit Board

The Z-100 series computers support a powerful bit-mapped video system, requiring a minimum of one bank of 32 K for video memory. The video circuit board has the capacity for up to three banks (one each for red, green, and blue) of 32 K or 64 K memory devices. The video board interfaces with the main board and contains the CRT controller (CRTC) and output facilities for both composite monochrome monitors and RGB color monitors.

Jumpers provide flexibility in selecting memory device types, although they may not be mixed, and RGB or monochrome operation. In addition, if 32 K of 64 K devices are used, the board has provisions for addressing the upper or lower 32K.

The video board is directly accessible from the S-100 bus and may controlled by either temporary or master processors. The CRTC, video control bits, and video RAM are all accessible from the S-100 bus and are compatible with it. However, the board is not an S-100 board and does not meet S-100 standards for signal interfacing or power supply requirements.

Floppy Disk Controller

The floppy disk controlier is on a card that occupies one of the five S-100 slots. It conforms to IEEE-696 standards for S-100 cards and provides the necessary read/write and control signals for up to four 5.25 -inch and four 8 -inch floppy disk drives. Drive types may be mixed and are dependent upon the operating system for control. Note: Standard Z-DOS, CP/M-85, and CP/M-86 operating systems, as supported by Zenith Data Systems, are configured to support only two of each drive size. If additional drives are required, the operating systems will have to be modified by the user.

GENERAL INFORMATION

System Description

Winchester Disk Controller

The optional Winchester disk controller is on a card that also occupies one of the five S-100 slots. It conforms to IEEE 696 standards for S-100 cards. The data separator for the Winchester system is on a separate circuit board and is mounted on the Winchester disk drive itself. The two cards provide the necessary read/write and control signals for up to two Winchester drives. Note that Zenith Data Systems supports operating system software for only one Winchester drive at this time for single user installations.

Other Options

Other optional S-100 cards are available from Zenith Data Systems. They include the NET-100 Z-LAN ${ }^{(10)}$ network card and interface software, the Z-204 multiport input/output card (available with or without ring detect), and the Z-205 memory card (with a capacity for 256 K additional RAM memory).

In addition, cards from other suppliers may be added that are IEEE 696-compatible. Note that neither Zenith Data Systems nor Heath support nor recommend the use of any of these cards.

GENERAL INFORMATION

Disassembly

There are a number of versions of both the Low-Profile and All-in-One Z-100 Series available. The variations in the configurations are limited to 5.25 -inch drive size (both full-sized and half-height versions are available) and whether or not the optional Winchester disk system is installed in the computer.

In addition, optional cards can be added to accommodate additional memory, additional input/output ports, and the Zenith Local Area Network (Z-LAN).

When you are disassembling your system, keep in mind there various options and if installed, draw a chart of the cable connections of the S-100 cards in your particular system.

NOTE: If you have a Winchester system, make sure that the drive is in the SHIP position. See your Z-100 User's Manual Winchester Supplement for instructions.

Cabinet Removal

Before proceeding with disassembly, disconnect all line cords to your computer and its peripherals.

GENERAL INFORMATION

Disassembly

Refer to Pictorial 1-2 and move the metal slides to the rear approximately $1 / 4$-inch as shown. Carefully lift off the cabinet top and set it to one side. (On the All-in-One models, you will have to use a flat-bladed screwdriver as illustrated in the pictorial.

Pictorial 1-2. Cabinet Removal

GENERAL INFORMATION

Disassembly

Card Removal

Refer to Pictorial 1-3. The various cards in your computer can be removed as your needs dictate. However, be aware that you will occasionally have to remove cables from several different cards to remove one card.

For instance, if you want to remove the floppy disk controller card and you have a Winchester card installed to the back of it (as viewed from the front of the computer, you will have to remove the cables going from the Winchester card to the drive. Likewise, if you are removing the Winchester controller card (for installation of the jumper for PREP operation), you may have to remove one of the two cables going from the floppy disk controller card.

Cards may be removed by simultaneously pivoting up both of the card lifters as illustrated in the pictorial, unplugging any cables (including those that may be routed over the card you are removing), and then lifting the card up out of the computer.

Pictorial 1-3. Card Removal

GENERAL INFORMATION

Disassembly

Display and Disk Drive Assembly (All-in-One Computer)

Refer to Pictorial 1-4.

\square Remove screw A and completely loosen the four B screws (these last four may be accessed through holes in the cabinet slides. Lift the display and disk drive assembly up and forward a short distance.

Pictorial 1-4. Display and Disk Drive Assembly Removal

GENERAL INFORMATION

Disassembly

Floppy Disk Systems only; refer to Pictorial 1-5 and remove:

- the flat cable from the floppy disk controller card,
- the power supply cable(s) at the drive(s), and
- the video signal/power cable on the video deflection board.

Pictorial 1-5. Disconnecting the Floppy Disk Drives

GENERAL INFORMATION

Disassembly

\square Winchester Disk Systems only; refer to Pictorial 1-6 and remove:

- the two flat cables (134-1279 and 134-1281) from the Winchester controller card,
- the flat cable (134-1144) from the floppy disk controller card,
- the power cable from the Winchester controller card,
- the power supply cables from the drives, and
- the video signal/power cable on the video deflection
board.

GENERAL INFORMATION

Disassembly

Low-Profile Front Panel and Disk Drive Assembly

Refer to Pictorial 1-7.
$\square \quad$ Remove the four screws at A and two locking pins at B.
$\square \quad$ Lift the front panel and disk drive assembly out of the computer and to the front a short distance.

GENERAL INFORMATION

 Disassembly
Refer to Pictorial 1-8.

\square Floppy Disk Systems only; remove:

- the flat cable from the floppy disk drives and
- the power supply cable(s) at the drive(s).
$\square \quad$ Set the assembly aside.

Pictorial 1-8. Disconnecting the Floppy Disk System

GENERAL INFORMATION

Disassembly

Refer to Pictorial 1-9.
\square Winchester Disk Systems only; remove:

- the two flat cables (134-1279 and 134-1281) from the Winchester controller card,
- the power cable from the Winchester controller card,
- the flat cable (134-1284) from the floppy disk controller card, and
- the power supply cables at the drives.

GENERAL INFORMATION

Disassembly

Keyboard

Refer to Pictorial 1-10.
$\square \quad$ Remove the two screws at A from near the top of the keyboard.
\square Low-Profile models only; remove the two locking pins at B from near the rear of the computer.
$\square \quad$ Lift off the keyboard shell. Set the shell to one side.

GENERAL INFORMATION

Disassembly

Refer to Pictorial 1-11.
$\square \quad$ Move the keyboard forward and unplug the two cables from the main board. Set the keyboard to one side.

Pictorial 1-11. Removing the Keyboard

GENERAL INFORMATION

Disassembly

Power Supply

Refer to Pictorial 1-12.
NOTE: Your power supply may look different than the one illustrated.Unplug remaining power cables.
\square Remove the four screws at A from the rear panel as illustrated.
\square Remove the two screws at B from the front bottom of the power supply that hold it to the base.
\square Lift the power supply out of the computer and set it to one side.

WARNING: There are no user-serviceable parts inside your power supply. Never open it up or break the seal; with a line cord attached, there are lethal voltages present!

Card Cage

\square Disconnect any remaining cables to cards in the card cage. Note their positions; because of the large variety of options available and new or planned products, no illustrations are provided in this manual for reconnecting these cables.

GENERAL INFORMATION

Disassembly

Remove all cards from the card cage and set them to one side.Remove the two screws at C from the rear panel as illustrated.Remove the four screws at D from the base as illustrated.$\square \quad$ Remove and set the card cage to one side.

Pictorial 1-12. Removing the Power Supply and Card Cage

GENERAL INFORMATION

Disassembly

Video Logic Circuit Board

Refer to Pictorial 1-13.
$\square \quad$ Remove the three screws holding the board to the three hex mounting spacers.Unplug the two cables from the main board.

Pictorial 1-13. Removing the Video Logic Board

Disassembly

Main Board

Refer to Pictorial 1-14.

$\square \quad$ Remove the three hex mounting spacers at A from the main board.
$\square \quad$ Remove the nine screws at B from the main board.
$\square \quad$ Remove the main board and set it to one side.
This completes the disassembly of the modules of your computer. The next section covers disassembly of the disk drive modules.

Pictorial 1-14. Removing the Main Board

GENERAL INFORMATION

Disassembly

Disk Drive Modules

There are several different configurations of disk drives for your computer. These include units with one or two floppy disk drives, one floppy disk drive and one Winchester drive, and similar modules with half-height floppy disk drives.

All-in-One Models

Refer to Pictorial 1-15. Note that this pictorial illustrates a twodrive half-height module; the following instructions apply equally to all configurations of the All-in-One computer - fullsized floppy disk, half-height floppy disk, and Winchester versions.Remove the four screws and spacers at B.
$\square \quad$ Remove the six screws at A. Note the ground strap placement.
$\square \quad$ Remove the drive assembly chassis from the display and disk drive assembly.
$\square \quad$ Set the display assembly to one side.

Disassembly

Pictorial 1-15. Removing the Disk Drive Assembly

GENERAL INFORMATION

Disassembly

Refer to Pictorial 1-16. This pictorial illustrates a Winchester and full-sized floppy disk system. Your system, whether it is a half-height or floppy disk only version will be similar.Remove the three screws at A and remove the front panel and panel from the assembly.

Pictorial 1-16. Removing the Front Panels

GENERAL INFORMATION

Disassembly

Winchester Systems

Refer to Pictorial 1-17.Remove the data separator cable assembly 134-1380 from the data separator board.Remove the four screws at A and remove the data separator board; set it to one side.

Full-sized floppy disk drives only; remove the four screws at B and remove the Winchester disk drive.Full-sized floppy disk drives only; remove the four screws at C and remove the floppy disk drive.

Page 1.26

GENERAL INFORMATION

Disassembly

Refer to Pictorial 1-18.

\square Half-height floppy disk drives only; remove the four screws at B and remove the floppy disk drive.
\square Half-height floppy disk drives only; remove the four screws at C and remove the Winchester disk drive.

Pictorial 1-18. Removing the Disk Drives

Low-Profile Models

Get the front panel and disk drive assembly that you set to one side earlier.\square Carefully remove the front panel from the front of the assembly. Set it to one side where the tacky side will not be contaminated by dust, lint, paper, or other objects.

Refer to Pictorial 1-19.
$\square \quad$ Winchester versions only; remove the four screws at B and remove the data separator board.
\square Winchester versions only; remove the four screws at A and carefully slide the Winchester drive out the front of

Pictorial 1-19. Removing the Winchester Drive

GENERAL INFORMATION

Disassembly

Refer to Pictorial 1-20. This pictorial illustrates removal of a half-height drive from the drive shelf. Removal of a full-sized drive is similar.Remove the four screws at A and slide the floppy disk drive out the front of the assembly.
\square Half-height versions only; remove the four screws holding the drive shield to the left and right side brackets.
\square
Half-height versions only; remove the two flat head screws that hold each side bracket to the drive. Note the placement of the mounting screws in the side bracket; the position and holes used will vary according to the drive used in your system.
\square If your system has two floppy disk drives, the second drive may be removed in a similar manner to the first.

This completes the disassembly section of your manual. Parts are identified in the various parts lists through this and other technical manuals published by Zenith Data Systems. A complete service manual is also available from Heath replacement parts or your local dealer.

GENERAL INFORMATION
Disassembly

Pictorial 1-20. Removing the Floppy Disk Drives

Main Board

Description 2.2
User Options and Jumpers 2.3
Programming Information 2.6
Theory of Operation 2.19
Circuit Description 2.23
Replacement Parts List 2.92
Semiconductor Identification 2.95
Circuit Board X-Ray Views 2.136
Interconnect Pin Definitions 2.137
Schematic (Inside Envelope at rear of manual.)

DESCRIPTION

The main board is the permanent bus master unit in the S-100 bus system and contains two microprocessors, an 8085 and an 8088 . Both operate at 5 MHz . The 8088 has a 16 -bit internal architecture that interfaces to an 8 -bit external architecture, while the 8085 is a pure 8 -bit processor.

The main board also contains up to 32 k bytes of ROM, and up to 192k bytes of RAM with parity. There are two serial ports, a parallel printer port, a light pen port, a keyboard, and a timer. All of these ports are accessible from the S-100 bus.

The five-slot S-100 bus is located on the main board. This bus meets the proposed IEEE-696 definition of an S-100 bus.

The main board itself is not an S-100 card, although it meets the signal interface requirements of an S-100 card.

Pictorial 2-1
Main Circuit Board

USER OPTIONS AND JUMPERS

Refer to Pictorial 2-1 as you read the following information.

Switch S101

DIP switch S101 selects the following functions during powerup or master reset. Set the switches for your system and preferences.

Switch S101,
Section
Description
0
1
2
3
4
5
6
7

Sections 0,1 , and 2 should be set to reflect the type of drive that the system is to be booted from:

Switch			
Section			Device
2	1	0	Type
0	0	0	5-1/4" floppy disk drive (internal)
0	0	1	$8^{\prime \prime}$ floppy disk drive (external)
0	1	0	5 " Winchester disk (internal)

USER OPTIONS AND JUMPERS

Circuit Board Jumpers

The main board circuit board jumpers perform the following functions:

J101 - Selects whether +5VDC or address line BA14 is applied to pin 27 of the PROM. The position shown has +5 VDC connected to pin 27 for an $8 \mathrm{~K} \times 8$ or $16 \mathrm{~K} \times 8$ PROM. Move the jumper to the other position to use a 32 K $\times 8$ EPROM.

J102 - Same as J101 except for address line BA13 and pin 26 of the PROM. The position shown is for using an 8 K $\times 8$ EPROM. Move the jumper to the other position to use a $16 \mathrm{~K} \times 8$ or a $32 \mathrm{~K}=8$ EPROM.

J103 - Controls which transition of the light pen strobe (LTPNSTB) will cause a light pen interrupt. The position shown causes an interrupt on the negative-going edge. It is properly jumpered for operation with a light pen that causes a negative pulse during a "hit."

J104 - No jumper is needed at this position. A foil trace connects the indicated two pins as shown. If the foil is cut and a jumper is installed in the other position, an NMI (TRAP for the 8085) will be generated when the S-100 power fail signal (PWRFAIL*) is active.

J105 - No jumper is needed at this position. If a jumper is installed, the TEST input to the 8088 will be grounded. Otherwise, this input is high.

J106 - For factory test use only.
J107 - No jumper is needed at this position. A foil trace connects the two pins together. If the foil is cut, the main board will not provide the S-100 MWRT signal. Currently, the main board does provide this signal to the $\mathrm{S}-100$ bus.

USER OPTIONS AND JUMPERS

J108 - No jumper is presently used at this position. If a iumper plug is installed, serial port B will generate an interrupt when the transmitter is empty (TXEMT active) in addition to its normal interrupts.

J109 - This jumper connects serial port A DCD input to either ground or RTS from the connector. It is normally set in the mode shown that connects DCD to RTS.

J 110 - Same as J 108 , but for serial port A.
J111 - This jumper connects the serial port A CTS line to either ground or RTS from the serial connector. It is normally set in the position shown, which connects the CTS line to ground.

PROGRAMMING INFORMATION

The information in this section concerns the main board only and is meant to be used by the experienced programmer. Programming for the entire system is contained in "Programming Data" toward the end of this manual.

Port Addresses

The following port addresses are for devices located on the main board. A more complete list can be found in "Programming Data."

Device Name

Port Address (HEX)

DIP Switch FF
Processor Swap FE
High Address Latch FD
Memory Control Latch FC
8253 Timer Status FB
reserved FA
reserved F9
reserved F8
reserved F7
reserved for manufacturing tests F6
8041A Keyboard F5
-8041A Keyboard F4
8259A Master F3
-8259A Master F2
8259A Slave F1
-8259A Slave F0

2661 Serial B EF

- 2661 Serial B EE
- 2661 Serial B ED
- 2661 Serial B EC

PROGRAMMING INFORMATION

Device Name	Port Address
2661 Serial A	EB
-2661 Serial A	EA
-2661 Serial A	E9
-2661 Serial A	E7
	E6
8253 Timer	E5
-8253 Timer	E4
-8253 Timer	E3
-8253 Timer	E2
	E1
68A21 Parallel	E0

Port Bit Definitions

The definitions given below are for the bits that are written to or read from the ports listed earlier that do not connect to peripheral devices.

PROGRAMMING INFORMATION

Dip Switch Port (FF)

The function of the DIP switch bits are defined by the monitor program in ROM on power-up or master reset, but they may be redefined and reread by the operating system when it is loaded. The following chart gives the definition of the DIP switch's bits for the monitor ROM.

Switch S101,
Section

Description

0	\%
1	\} Default boot device*
2	
3	1 = Auto boot, $0=$ Manual boot
4	not used
5	not used
6	not used
7	$0=60 \mathrm{~Hz}, 1=50 \mathrm{~Hz}$; for video vertical scan frequency.

*Sections 0,1 , and 2 should be set to reflect the type of drive that the system is to be booted from:

| Switch
 Section
 2 | 1 | 0 | |
| :---: | :---: | :---: | :---: |\quad| Device |
| :--- |
0	10	Type:

PROGRAMMING INFORMATION

Processor Swap Port (FE)

Processor swap is accomplished by the presently selected processor writing to bit 7 of the processor swap port (PSP). If a 1 is written, the 8088 is selected. A 0 selects the 8085. (See the following chart.)

When the processor swap occurs, the newly selected processor can be restarted where it left off, or, an interrupt (I1 on 8259A) can be generated. Interrupt generation is enabled by writing a 1 to bit 1 (not LSB) of the PSP.

The last option that concerns the swap port is the masking of interrupts. If interrupts are not masked, the currently selected processor is signaled when an interrupt is requested. If the MASK mode is selected, no interrupts will get through to the 8085 . The 8088 will service all interrupts. In the MASK mode, a processor swap to the 8088 is generated whenever an interrupt occurs with the 8085 active. MASK is bit 0 of the PSP. A 1 activates this function.

PROGRAMMING INFORMATION

High Address Latch (FD)

The 8085 in its natural state has 16 bits of addressing capability. By writing to the high address latch, HIGHADDR, the user can control the upper eight address bits placed onto the bus, and thereby generate 24-bit addresses.

The 8088 naturally has 20 bits of addressing. The upper four bits placed on the bus are controlled by HIGHADDR. The hardware automatically selects bits A16-A19 coming from the 8088 when the 8088 is selected.

PROGRAMMING INFORMATION

Memory Control Latch Port (FC)

This port controls the configuration of memory, both ROM and RAM. It also provides an option for checking RAM parity. The options, which affect how the ROM is addressed, are enabled by writing to the memory control latch (MEMCTL) port.

The following chart shows which port bits control the various RAM configurations.

$$
\begin{array}{lll}
\text { BITS } & \text { DEFINITION } & \\
1,0 & 00=\text { Option } 0 & 01=\text { Option } 1 \\
& 10=\text { Option } 2 & 11=\text { Option } 3
\end{array}
$$

Option 0, the power-up master reset configuration, provides contiguous addressing; from 0 to 192 K .

Option 1, swaps the RAM block from 0 to 48 K with the block at 64 to 112 K .

Option 2, swaps the RAM block from 0 to 48 K with the block at 128 to 172 K .

Option 3, swaps the RAM block from 4 to 60 K with the block at 68 to 124 K .

PROGRAMMING INFORMATION

The following chart shows which port bits control the four ROM configurations.

BITS DEFINITION
$\begin{array}{lll}3,2 & 00=\text { Option } 0 & 01=\text { Option } 1 \\ & 10=\text { Option } 2 & 11=\text { Option 3 }\end{array}$

Option 0 , the power-up or master reset configuration, makes the code in ROM appear to be in all of memory when reads are performed. Writes, however, occur normally.

Option 1 makes the ROM code appear to be at the top of every 64 K page of memory.

Option 2 makes the ROM code appear to be at the top of the first megabyte of memory.

Option 3 disables the ROM.
Parity consists of a parity bit for each byte in RAM. This adds one, two, or three 64K-bit chips (depending on how much RAM is installed: $64 \mathrm{~K}, 128 \mathrm{~K}$, or 192 K) and the associated support circuitry.

RAM parity has two control options: ZERO_PARITY and KILL_PARITY. The ZERO_PARITY option sets the parity to the zero state. This sets the parity bit to 0 regardless of the data pattern that was written and can be used to force a parity error to check the parity logic. The option is activated by writing a 0 to bit 4 of the Memory Control Latch (MEMCTL) port.

The KILL_PARITY option disables the parity checking circuitry by writing a 0 to bit 5 of the MEMCTL port. It also clears a parity error by first writing a 0 to bit 5 and then a 1 .

8253 Timer Status Port (FB)

The timer circuitry consists of an 8253 timer IC and several other IC's. (See the Timer Port Address Block Diagram.) The 8253 has three channels. Each channel has a input clock (- CLK) and an output (OUT). The CLOO and CLK2 inputs are tied to a $250 \mathrm{kHz}(4 \mu \mathrm{~S})$ clock. The CLK1 input is tied to the output of channel 0 , and thus channels 0 and 1 are cascaded.

Outputs OUT0 and OUT2 produce the timer interrupt input to the 8259. A latch is provided which can be read to determine which of the channels caused the interrupt (TMRSTAT). Outputs of these latches are OR'ed together to produce the interrupt input to the 8259.

To find out which timer caused an interrupt, the timer status port must be read. A high level on either the Timer 0 or Timer 1 bit indicates that the corresponding timer has had a positive transition on its OUT signal. In order to detect the next transition on the OUT signal, the latch should be cleared by writing a zero to the appropriate bit position in the timer status port.

The 8253 data sheet is supplied in the Appendices portion of this documentation. The following chart is provided for the convenience of those who may already be familiar with the 8253 device.

PROGRAMMING INFORMATION

8259A Interrupts (F0-F3)

The following list shows the possible interrupts. The slave 8259A handles only the vector interrupts you configure your hardware to generate.

Timer Port Address Block Diagram
Master 8259A
$10-\mathrm{S}-100$ error signal (parity error from main board memory).
11 - Processor swap
12 - Timer
I3 - Slave 8259A
14 - Serial A
15 - Serial B
16 - Keyboard video display, and light pen
17 - Parallel printer port
Slave 8259A
$\left.\begin{array}{l}10-\mathrm{VI0} \\ 11-\mathrm{VI1} \\ 12-\mathrm{VI2} \\ 13-\mathrm{VI3} \\ 14-\mathrm{VI4} \\ 15-\mathrm{VI5} \\ 16-\mathrm{VI6} \\ 17-\mathrm{VI7}\end{array}\right\} \quad$ from $\mathrm{S}-100$ bus

PROGRAMMING INFORMATION

68A21 Parallel Port (E0-E3)

Port									
Address	7	6	5	4	3	2	1	0	
E0(CRA2 = 1)	$\overline{\text { CLPHT }}$	$\overline{\text { LPSWT }}$	$\overline{\text { CVINT }}$	VIDINT	$\overline{\text { INIT }}$	STROBE	PD2	PD1	Peripheral Register A
$\mathrm{E} 0(\mathrm{CRA} 2=0)$	1	0	1	0	1	1	1	1	Direction
E1	IRQA1	IRQA2		A2 Contr		CRA2	CA1	trol	Control Register A
$\mathrm{E} 2(\mathrm{CRB2}=1)$	PD8	PD7	PD6	PD5	PD4	PD3	$\overline{\text { ERROR }}$	BUSY	Peripheral Register A
$\mathrm{E} 2(\mathrm{CRB} 2=2)$	1	1	1	1	1	1	0	0	Data Direction Register B
E3	IRQB1	IRQB2		2 Contr		CRB2	CB1	ntrol	Control Register B
		$\begin{aligned} & 1=\text { LTPN } \\ & 12=\text { QVIDI } \\ & 31=\text { ACK } \\ & 32=\text { BUSY } \end{aligned}$	B (light (Latche inter Ack rinter Bu	Strobe) ertical S wledge S Signal)					

The 68A21 and associated circuitry perform three functions:

- Parallel printer port
- Light pen port
- Couples video retrace signal to CPU

The 68A21 is configured as a parallel printer port. The CPU programs the 68A21 and controls it during data transfer.

PROGRAMMING INFORMATION

This printer port uses portions of both port A and port B in the 68A21. The eight bits of data out to the printer, PD1-PD8, are assigned to port A, bits 0 to 1 , and to port B, bits 2 through 7 assigned to port A, bits 0 to 1 , and to port B, bits 2 through 7 respectively. Data is latched at the printer by pulsing the STROBE signal (Port A, bit 2). The printer may respond by activating the BUSY signal, which can be interrogated for a level condition by reading Port B , bit 0 , or for a transition by appropriate use of the CB2 input and control bits. (See the 68A21 Data Sheet in the Appendices for detailed operation.) The printer may also respond by pulsing the ACK line, which may be detected through use of the CB1 input and the CB1 control bits. The printer error signal, ERROR, is read by Port B , bit 1 . The printer may be initialized by activating the INIT line by Port A, bit 3 .

The CPU will not respond to a signal from the light pen circuits. It requires a user-supplied program to set up interrupts, handle timing, and take care of bit locations that are pointed to by the light pen.

A pulse from the light pen is latched in a flip-flop, the output of which, LTPNSTB, is connected to the CA1 input. The flipflop must be cleared after detecting a light pen pulse by bringing CLPHT (Port A, bit 7) low momentarily. The switch on the light pen may be read by inputting from Port A and examining bit $6, \overline{\text { LPSWT. }}$

The vertical sync signal from the video board, VIDINT, Is also connected to the 68A21 of Port A, bit 4. The vertical sync is also latched in a flip-flop whose output, QUIDINT, is connected to teh CA2 input. By using the CA2 control bits, this input may be used to detect a transition of the vertical sync signal. This flip-flop is cleared by momentarily bringing $\overline{\text { CVINT }}$ (Port A, bit 5) low.

THEORY OF OPERATION

The Z-100 main board has five major parts: the CPU, the memory, the interrupt circuitry, the keyboard and timer, and the I/O circuitry. Each of these parts is shown in the block diagrams in Pictorials 2-1 through 2-5.

The CPU

As you can see in Pictorial 2-2, the CPU can be one of two different processors, either an 8085 or an 8088 . The 8085 has 8 -bit internal architecture and the 8088 has 16-bit internal architecture. They both communicate with the outside world via an 8 -bit data bus.

The 8085 processor is built to generate 16 -bit-wide memory addresses, but this range has been extended by 8 bits, generated through the address/data bus and latched by two 4-bit address latches. The total address width then becomes 24 bits. The 8088, on the other hand, is built to generate 20-bit addresses. This capability has been extended by 4 bits, which are similarly generated through the data bus and latched by one 4-bit address latch.

The two processors do not operate independently. Rather, they operate on an either/or basis, each being selected for use by software through the CPU selection logic. Upon power up, the 8085 is automatically selected, but the processors can be swapped at any time. When they are swapped, the newly selected processor can be restarted where it left off. Processor swapping may also occur whenever an interrupt occurs and the interrupt mask is enabled. The interrupt mask can prevent interrupts from reaching the 8085; instead, upon an interrupt, it can cause the CPU selection circuitry to select the 8088.

THEORY OF OPERATION

Pictorial 2-2
CPU Block Diagram

THEORY OF OPERATION

Memory

Pictorial 2-3 shows that the memory portion of the main board consists of memory selection circuitry, parity computation and storage, an address multiplexer, a refresh circuit, up to 192 K of data and parity RAM, and up to 32 K of ROM.

The selection circuitry decodes the address bits from the CPU to access the proper memory or port locations.

The parity computation and storage circuitry computes and stores a parity bit for every byte written into data RAM, and recomputes the parity and checks it against the value stored in parity RAM every time a word is read from data RAM. If a discrepancy is found, a parity error interrupt is sent to the 8259 interrupt controllers.

THEORY OF OPERATION

The address multiplexer converts the 16 -bit address bus to the 8 -bit row and column addresses required by the RAM chips.

The refresh circuit prevents the data in RAM from decaying.
The data and parity RAM is made up of 64 K increments, while the ROM consists of a single EPROM or ROM chip.

Interrupt Circuitry

This circuitry consists of two 8259A interrupt processors, one a master and the other a slave. See Pictorial 2-4. The slave 8259A services vector interrupts from the S-100 bus if the hardware has been configured to use them.

THEORY OF OPERATION

Keyboard

As shown in Pictorial 2-5, this circuitry is made up of a keyboard and a keyboard encoder.

The encoder detects a closed key contact in the keyboard and converts it into the corresponding ASCII code for that key.

Pictorial 2-5
Keyboard Block Diagram

I/O Circuitry

The I/O circuitry consists of a 6821 parallel printer port, two 2661-2 serial ports, and a TTL control latch for internal use of the main board, as shown in Pictorial 2-6.

Pictorial 2-6
I/O Block Diagram

CIRCUIT DESCRIPTION

CPU

Please refer to the main board schematic while you read the following detailed description.

The 8085 CPU

General

The 8085 CPU (U210 on the schematic) is the Computer's 8 -bit processor. Because the 8085 uses the same instruction set as the Intel 8080, the Z-100 computer can maintain a high degree of software compatibility with previous Zenith Data Systems Computers.

To understand the 8085, study the pin-out and basic timing discussion that follows. If you need to know more about the 8085, see the IC data sheets Appendix C of this Manual.

NOTE: In this and all pln-out descriptions in this Manual, active low signals may be designated as such by the traditional bar over the signal name (e.g., SIGNAL).

Pin-Out Description

A8-A15, pins 21-28 (3-state address). These multiplexed lines contain the upper eight bits of the memory address during a memory access. During an I/O operation they contain the port address. The lines are tri-stated during HOLD, HALT, and RESET.

AD0-AD7, pins 12-19 (3-state address/data). These multiplexed lines first contain the lower eight bits of the memory address during a memory access. This address is then stored in external latches. The CPU next places the input or output data associated with that address on AD0-AD7. During an I/O operation, these lines first contain the port address, and then the data (either input or output) associated with that port.

CIRCUIT DESCRIPTION

ALE, pin 30 (address latch enable). This output line pulses high, and then low, when either the memory or I/O address is on lines A0-A7. The external circuits use the negative-going transition to latch the address information. The falling edge of ALE is also used to strobe CPU status information.

S0, S1, $10 / \bar{M}$, pins 29, 33, 34 (status output $0 \& 1$, input output/memory). These output lines are used in conjunction with ALE to develop the S-100 machine cycle status lines at U227. (See "Bus Status Circuits" on Page 2.35 for more details.)
$\overline{\mathrm{RD}}$, pin 32 (3-state read control). This input line goes to logic 0 to indicate that the data bus is ready to transfer data from memory or I/O to the CPU. 3-stated during HOLD, HALT, and RESET.
$\overline{\text { WR, }}$, pin 31 (3-state write control). This output line goes to logic 0 to indicate that the data bus is ready to transfer data from the CPU to memory or I/O. Data is set up on the trailing edge of the pulse. 3-stated during HOLD, HALT, and RESET.

READY, pin 35 (ready). If this input line is at logic 0 , the CPU enters a wait state until READY is brought to logic 1 again. This allows using the 8085 with slow memories or peripherals.

HOLD, pin 39 (hold). If this input line is at logic 0, the CPU halts operation, raises the hold-acknowledge line (HLDA), and places the following lines into a high impedance state: Address/Data, $\overline{\mathrm{WR}}, \overline{\mathrm{RD}}$, and $I \mathrm{O} / \overline{\mathrm{M}}$. This allows other processors, such as the 8088, to gain control of the bus.

HLDA, pin 38 (hold acknowledge). This input line goes high to indicate that the CPU received the HOLD request and will release control of the bus in the next cycle. HLDA goes low again after the HOLD request is removed.

CIRCUIT DESCRIPTION

INTR, pin 10 (interrupt request). If this input line is brought high, and the interrupts are not disabled through software, the CPU completes its current cycle and then processes the interrupt. (See "Interrupt Circuits" for more details.)

INTA, pin 11 (interrupt acknowledge). This output line goes low to indicate that the CPU has accepted the interrupt.

TRAP, pin 6 (nonmaskablo interrupt). This input line is the highest priority interrupt and cannot be disabled.

RESETIN, pin 36 (reset input). Bringing this input line low resets the Computer. It sets the program counter to 0, disables interrupts, and resets the HLDA flip-flop.

X1, X2, pins 1, 2 (clock input). This clock input, provided by the $10-\mathrm{MHz}$ crystal at Y 101 , is internally divided down to 5 MHz .

CLK (clock output). This clock output provides $5-\mathrm{MHz}$ timing to the Computer when the 8085 has control.

RST 5.5, pin 9. Not used and tied to ground.
RST 6.5, pin 8. Not used and tied to ground.
RST 7.5, pin 7. Not used and tied to ground.
SID, pin 33. Not used and tied to ground.
SOD, pin 29. Not used and left unconnected.

CIRCUIT DESCRIPTION

Timing

To better understand how the Computer works, you should become familiar with the 8085 timing. Pictorial $2-7$ shows the waveforms that occur when the 8085 processes the OUT instruction. Though there are seven possible types of machine cycles (see the data sheets), these waveforms are typical.

During the M1 cycle,the Computer fetches the op code; in this example, the OUT instruction. The M1 cycle lasts for four clock states (T-states). During this time, A8 through A15 contain the upper eight bits of the memory address of the instruction to be fetched.

From time T1 to T2, lines AD0-AD7 contain the lower eight bits of memory address. The ALE line goes low to strobe this information into the external address latches. The IO/M line goes low to indicate that this is a memory-read operation. The signals on the status lines, S0 and S1, indicate that the op code fetch cycle is taking place.

CIRCUIT DESCRIPTION

From time T2 to T3, $\overline{R D}$ goes low and the instruction in the memory location pointed to by the address latches is placed on lines ADO-AD7, which are now acting as data lines. The data, which consists of an OUT instruction, is loaded into the Computer for internal processing during time T3 to T 4 .

From time T3 to T4, $\overline{\text { RD }}$ goes high and AD0-AD7 goes to a high impedance state.

During the M2 cycle, the Computer reads the data in the next memory location, which is the I/O port address the Computer is to OUTput the data to. At time T1, lines A0-A15 contain the address of the memory location that holds the I/O port address. The ALE line strobes this address into the external address latches. Line IO/M is still low to indicate that the M 2 cycle is a memory read cycle. This is also indicated by the logic states on status lines S1 and S0.

At time T2 to T3, $\overline{\mathrm{RD}}$ goes low to read the memory location pointed to by the address latches. This location contains the address of the I/O port to be accessed.

During the M3 cycle, the Computer transfers the data in its accumulator to the port address specified by the M2 cycle. This time, during T1 to T2, lines AD0-AD7 contain the port address fetched during the M2 cycle. Line ALE strobes this information into the external address latches. Lines AD8-AD15 also contain the port address, but are not used. The $I O / \bar{M}$ line goes high to indicate that this cycle is an I/O cycle, rather than a memory cycle. Also, the logic states of the status lines, S 0 and S 1 , indicate that this cycle is an I/O write cycle.

During time T2 to T3, the data in the accumulator of the 8085 is placed on the data bus and $\overline{W R}$ goes low to write it to the port pointed to by the address latches.

After T3, the 8085 generates another M1 cycle and fetches the next instruction in the program.

CIRCUIT DESCRIPTION

The 8088 CPU

General

The 8088 CPU is the Comupter's 16 -bit processor, which is located at U211 on the schematic. This IC combines the resources of a 16-bit microprocessor's internal architecture with the easy-to-use 8 -bit bus interface. In fact, most of the functions of the bus lines in the 8088 are identical to the 8085 at U210.

Some of the features of the 8088 are:

- A 20-bit address bus, allowing the 8088 to directly address up to 1 megabyte of memory.
- A 16-bit input/output port address range, allowing the 8088 to select up to 65536 port addresses. However, only the lower eight bits are used in Z-100 Series Computers.
- Pipelined architecture to allow fetching instructions and processing previously-fetched instructions at the same time. (Refer to the "iAPX 88 Book" in Appendix C.)

CIRCUIT DESCRIPTION

Pin-Out Description

Refer to Pictorial 2-8 while you read the following paragraphs.

Pictorial 2-8

CIRCUIT DESCRIPTION

$\overline{\mathbf{R D}}, \mathbf{p i n} 32$ (read strobe). This line goes low when the CPU reads from memory or an I/O port, and goes to a high impedance state during hold acknowledge (HLDA).
$\overline{\text { WR, }}$, pin 29 (write strobe). This line goes low when the CPU writes to memory or an I/O port, and goes to a high impedance state during HLDA.
$10 / \bar{M}$, pin 28 (status line). This line goes low during a memory read or write ($\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ asserted). It is logic 1 for an I/O read or write. It is 3 -stated during HLDA.

DT/ $/ \bar{R}$, pin 27 (data transmit/receive). This line is similar to $10 / \bar{M}$.

SSO, pin 34 (status line). This line is used with DT// $\overline{\mathrm{R}}$ and $10 / \bar{M}$ to develop the $\mathrm{S}-100$ status circuit signals. The logic levels on this line depend on what type of instruction the CPU is processing. This line is brought to a high impedance state during HLDA.

ALE, pin 25 (address latch enable). This line pulses high when the CPU places the address information on the address/ data bus. In the Computer, this line clocks the address into external latches on the negative-going edge of ALE.

AD0-AD7, pins 16-9 (address/data bus). When ALE is asserted, these lines contain the lower eight bits of the 20-bit address. This can be a memory address or an I/O port address. Later in the machine cycle, when data is to be transferred, these lines contain the input or output data. Demultiplexing circuits in the Computer are used to separate the data and address information. These lines are 3 -stated during HLDA.

A8-A15, pins 2-8 \& 39 (address bus). These lines carry the next eight bits of the address. This is memory address during a memory access and I/O address during the port access. These lines hold the address during the entire bus cycle. They are 3 -stated during HLDA.

CIRCUIT DESCRIPTION

NMI, pin 17 (non-maskable interrupt). A positive-going transition on this line interrupts the CPU. It cannot be blocked with software. The CPU will complete its current instruction and then service the interrupt.

INTR, pin 18 (interrupt request). The CPU tests this line during the last clock cycle of each instruction to see if some device is requesting an interrupt. If pin 18 is logic 1, then an interrupt request is taking place. The CPU processes the interrupt unless the interrupt is masked by software.

INTA, pin 24 (interrupt acknowledge). The CPU brings this line to logic 0 to inform the interrupting device that it is processing the interrupt. It is used as a read strobe to get vector information from the interrupt circuits (see the interrupt circuit description for more details).

HLDA, pin 30 (hold acknowledge). This pin goes high to indicate that the CPU has acknowledged a hold request at pin 31.

HOLD, pin 31 (hold request). This line goes high when another device requests control of the bus, such as when the 8085 is the active processor. The CPU asserts the HLDA line and suspends operation.

A19-A16, pins 35-38 (address/status bus). These lines hold the top four bits of the 20 -bit address bus when the ALE is active. ALE clocks this value into external latches when it returns to 0 . These lines contain status information during the last part of the machine cycle. This feature is not used in the Computer since it gets the status information in a different manner. These lines are 3 -stated during HLDA.

TEST, pin 23 (test input). This input is examined by the "WAIT FOR TEST" software instruction. If pin 23 is low, execution continues. Otherwise, the processor waits in an idle state.

CIRCUIT DESCRIPTION

$\mathbf{M N} / \overline{\mathbf{M X}}$, pin 33 (minimum/maximum). A logic 1 on this pin places the 8088 in the minimum mode, the mode used by the Computer. When it is placed in the maximum mode, some of the pin functions change. Usually, the maximum mode is used for larger systems and multiprocessing systems.

RESET, pin 21 (reset). This pin goes high to reset the 8088. The interrupts are disabled, certain registers in the 8088 are set or cleared, and the instruction pointer (program counter) points to the address 16 bytes below the top end of the 1 megabyte range (FFFFOH).

The line is asserted when the RESET line at U236, pin 11 is pulled low. A Schmitt trigger shapes up this signal and the clock retimes it before applying it to the 8088.

READY, pin 22 (ready). This is an acknowledgement signal from the addressed memory or I/O port that it is ready to transfer data. When this line is low, the CPU goes into a wait state until the addressed device brings it high. This allows using the 8088 with slow memory or I/O devices.

The READY signal is generated when U205-9 places a logic 1 on U236, pin 4 . U236 synchronizes this signal with the 8088 clock to ensure correct set-up and hold times.

CLK, pin 19 (8088 clock input). This is a $5-\mathrm{MHz}$ clock that provides timing to the 8088.

This signal comes from U236, pin 8, which derives it from the $15-\mathrm{MHz}$ crystal at Y 103 . Duty cycle is about 33% for optimized timing inside the 8088. [When the 8088 is the active processor, this line (88Φ) also goes to the CPU dock swap logic to provide system timing.]

Timing

Timing for the 8088 is essentially the same as the timing for the 8085 , since the 8088 is operated in the "min" mode.

CIRCUIT DESCRIPTION

Processor Swap Port

General

The processor swap port controls which CPU is to be active, handles interrupt routing, and ensures proper timing of the clock circuits during the swap. To access the swap port, the CPU writes a control byte to port OFEH. Only three bits of the byte are used: ADO controls the automatic wrap and/or mask mode, AD1 controls the swap interrupt line, and AD7 performs the processor swap.

At power up, the reset circuits clear U171 pin 9 to logic 0. This pin, 8SEL, connects to U186, a 12 H 6 PAL, through pin 5. This IC responds by placing a logic 0 on U187 pin 12 and a logic 1 on U187 pin 2 . On the first positive transition of $\overline{85 \Phi}$, the 85 HOLD line goes low, enabling the 8085 CPU . On the first positive transition of $\overline{88 \Phi}$, the 88 HOLD line goes high, disabling the 8088 CPU.

The 8085, while executing the code in the monitor ROM, soon transfers control to the 8088. It does this by setting bit 7 of the processor swap port control byte to logic 1 by writing to that port.

The CPU address port OFEH asserts SWAPCS (from the I/O decoder) at U206 pin 5. It then sets AD7 to logic 1 at U171 pin 12. Finally, it asserts the write line at U206 pin 6. As a result, U171 pin 11 goes high and latches U171 pin 9 to logic 1. The 8SEL line is now asserted. The values at U172 pin 12 and U172 pin 2 are also latched to their respective outputs.

The 8SEL line, now logic 1, causes U186 pin 13 to change to logic 1 , pin 18 to change to logic 0 , and pin 16 to change to logic 1. This last line, 88SEL, couples to U215 to form the $\mathrm{S}-100$ bus line (pin 21), NDEF (8088). This line is a "not-to-be-defined" line that can be used for any function. In the Computer, this line asserts when the 8088 is active.

CIRCUIT DESCRIPTION

The HOLD* line at U185 pin 11 asserts whenever a board on the S-100 bus takes control of the Computer. This causes U186 to disable both the 8085 and the 8088 through U187. Both CPUs respond by returning their HLDA signals; the 8088 at U 186 pin 3 and the 8085 at U 171 pin 2. When this happens, U188 asserts the HAK line at pin 17. This, in turn, raises the S-100 pHLDA line to logic 1 at U180 pin 9. The board that generated the HOLD* request can now take control of the Computer.

Swap Timing

The 88SEL line also goes to U188, pin 4, a quad D-type latch that suppresses any glitches on the system clock line when the Computer switches from one CPU to the other. It also ensures that the CPU being disabled is no longer active when the other CPU is enabled.

The 8085 and the 8088 run on separate crystal-controlled clocks; the 8085 from Y101 and the 8088 from Y105. Although these clocks are stable, they are not in phase. Switching from one clock to another can cause a glitch on the system clock line, $\mathrm{S} \Phi$, that can upset the timing in other circuits.

To see how U188 and its associated circuits block this spike, refer to Pictorial 2-9.

CIRCUIT DESCRIPTION

Pictorial 2-9
Switching from 8085 to 8088
The two top waveforms are the respective clocks for the 8085 and 8088 CPUs. These are present at the inputs of inverters U200 pin 2 and U200 pin 14. Assuming that the 8085 is the active processor, then U200 pin 1 is low and $\overline{85 \Phi}$ couples through the inverter to form $\overline{\mathrm{S} \Phi}$. It also couples through U225B to clock U188.

At time T1, the 8088 is selected; the 88SEL line goes to logic 1 as shown at A in Pictorial 2-9 (waveforms illustration). On the next positive edge of the clock at U188 pin 9, this logic 1 latches into U188 pin 2, which is the Q1 output at B. The next clock pulse causes the Q2 output to latch high, shown at C .

CIRCUIT DESCRIPTION

When Q2 goes high, it 3-states U200 through the exclusiveOR gate at U203B. At the same time, $\overline{\mathrm{Q} 2}$ goes low to couple the 88Φ clock to the $\overline{\mathbf{S \Phi}}$ line. Since, in this example, the two clocks are nearly 180 degrees out of phase, the clock immediately returns to 0 , causing the spike at D in Pictorial 2-9.

Up until this time, the output of U203, pin 8, another exclusiveOR gate, has been logic 1. This is because its inputs Q2 and $\overline{Q 3}$ of U188 have been in opposite states. However, since Q2 went high at time T3, both inputs to U203C are the same, causing U203 pin 8 to go to logic 0 (waveform E). This forces the system clock output at U225 pin 3 to logic 1 until time T4 (waveform F).

At time T4, the first positive-going edge of the 8088 clock causes the $\overline{\mathrm{Q} 3}$ output of U188 to go high. This opens the gate at U225A to pass the system clock, which is now the 8088 signal.

As mentioned earlier, the other function that 88SEL and U188 performs is to ensure that the CPU being disabled is completely disabled before the CPU to be enabled is activated. To see how this is done, again refer to Pictorial 2-9.

Assume as before that the Computer is switching from the 8085 to the 8088. At time T1, the 88SEL line, which is coupled to U203 pin 11, goes high, the other input of this exclusive-OR gate is the $\overline{\text { Q2 }}$ U188. Since both inputs are now the same state, U203, pin 11 goes to logic 0 to preset both HOLD latches at U187.

Both CPUs go into a HOLD state and keep HLDA signals asserted at U186; the 8088 to pin 3 and the 8085 to pin 4 through U171.

At time T3, the Q2 line goes low and U203 pin 11 returns to logic 1, releasing the latches at U187 from their preset states. On the next positive-going edge of the $\overline{88 \Phi}$ clock signal, the logic 0 at U187 pin 2 is latched into U 187 pin 5 , removing the 8088 from the hold state.

CIRCUIT DESCRIPTION

U188 pin 7 goes high to drive U215 pin 3 high. This last IC connects to pin 21 of the $\mathrm{S}-100$ bus to form the NDEF (8088/ $\overline{8085})$ line. This line is a "not-to-be-defined" line that can be used for any function by the computer manufacturer. For the H/Z-100 Series Computer, this line asserts when the 8088 is active.

The same process takes place when control of the system is switched from the 8088 to the 8085 ; the only difference is that the Q outputs of U188 are going from logic 1 to logic 0 . (See the bottom group of waveforms in Pictorial 2-9.)

Auto Swap On Interrupt/Mask Mode

The interrupt mask circuits ensure that interrupt requests are sent to the currently active CPU. The mask bit, MSK, is set or cleared by setting or clearing bit 0 of the processor swap port. If cleared, and the 8085 is active, the 8085 gets all interrupt requests. If set, and the 8085 is active, the interrupt request is blocked but the swap port disables the 8085 and enables the 8088 . If the 8088 is active, all interrupt requests are sent to the 8088 regardless of the mask bit.

After reset, 5SEL at U171 pin 8 and MSK at U172 pin 6 are logic 1, so that the 8085 is active and handles all interrupts. These two lines connect to U225 pin 9 and U225 pin 10, which are shown near the 8085 on the schematic. U220 pin 2 inverts the resulting logic 0 . This enables U189A and U189D. U189D can now couple non-maskable interrupts to the trap input of U210, and U189A can pass standard interrupts to U210's interrupt request input.

The 8SEL line, which is the complement of 5SEL, disables U189B and U189C, the AND gates to the 8088.

CIRCUIT DESCRIPTION

If, while the 8085 is selected, the $\overline{\mathrm{MSK}}$ line is set to logic 0 , then U220 pin 2 disables U189A and U189D. This blocks the interrupt request from both the 8085 and the 8088 . However, if either a standard or an NMI interrupt request occurs, U156 pin 6 will go high to assert the NMINT line.

This line connects to U155 pin 9 in the processor swap port. The other input is the MSK line which is also high. As a result, U155 pin 8 goes low to assert the 8SEL line. The Computer switches to the 8088 processor as described previously.

When the 8088 is active, 8 SEL is high to enable U189B and U189C. U189A and U189D are disabled because 5SEL is logic 0 at U225 pin 9 . So, no matter what the setting of the $\overline{\text { MSK }}$ bit at U225 pin 10, all interrupt requests are routed to the 8088 processor.

Swap Interrupt

Whenever one of the CPUs is placed into the HOLD state, it does not lose the contents of its registers. This way, when that CPU is again enabled, it can begin processing where it left off.

Alternatively, the currently active CPU can generate a swap interrupt to start the disabled CPU at a different memory location than where it was when it was turned off. It does this by programming the master 8259A to mask all interrupts except the swap interrupt, and then it asserts the SWAPINT line.

To generate the swap interrupt command, the Computer sets bit 1 to logic 1 in the processor swap port. It does this by asserting SWAPCS (from the I/O decoder) at U206 pin 5, setting AD1 to logic 1 at U172 pin 12, and then asserting the $\overline{W R}$ line at U206 pin 6 . U206 pin 4 goes high to latch U172 pin 9 to logic 1, sending the SWAPINT command to the interrupt circuits.

CIRCUIT DESCRIPTION

At the same time, the CPU also writes the correct control bits to 8SEL and MSK on the processor swap port. The Computer changes CPUs, finds that the SWAPINT line is asserted, and jumps to the correct location to process the interrupt.

Reset Circuits

Power-Up Reset

R114 and C189 provide the power-up reset signal for the Computer. Upon turn-on, C189 charges through R114, holding U207 pin 8 low for about 200 ms . This signal connects to several buffers to provide the proper reset levels to the rest of the computer:

U201B buffers the reset signal to provide the S-100 power-on clear (POC*) signal. This signal is logic 0 for reset and logic 1 otherwise. POC* resets the video board through U215D and P106 pin 64.

U201A buffers the reset signal to provide the S-100 SLAVE CLR* signal. Because U207 pin 8 controls U201A through its gate line (pin 1), SLAVE CLR* is logic 0 to clear and opencollector otherwise. This signal is present only to meet IEEE696 (S-100) standards. Currently, it is not used in the Computer.

U 210 C is also wired to provide a logic 0 for reset and a highimpedance state otherwise. This is because several circuits may share the S-100 RESET* line. This line drives U177H and, through the $\mathrm{S}-100$ bus, resets the Floppy Disk Controller Board.

U 177 H inverts the reset signal, which can be the power up reset or a keyboard reset, to drive the RESET line high. This line is again inverted by U177G and U177F to provide RESET1 and RESET2; all three lines go to several places on the motherboard and video board to provide the proper reset signals.

CIRCUIT DESCRIPTION

Keyboard Reset

When you press the CRTL key and the RESET key at the same time, pins 8 and 9 of U103 go low and force U183 pin 10 to logic 1. This is inverted at U183 pin 4 and coupled to U185A through the filter network, R109 and C174.

U185B and U185C invert the signal twice to provide the activelow KBDRESET pulse that couples to U201 pin 13. The output, U201 pin 11, is logic 0 for reset and high-impedance otherwise.

From U201 pin 11, the reset signal is processed as described earlier in "Power-Up Reset."

Dip-Switch Select Circuits

U239, S101, and U156A make up the DIP-switch select circuits. The position of these switches determine the operating mode of the Computer.

The Computer reads the status of S101 during power-up by addressing input port OFFH. To read the DIP-switch port, the CPU asserts the $\overline{\text { DSWSEL }}$ port select line coming from the I/O port decoder at U159 pin 7. The CPU also asserts the $\mathrm{S}-100 \mathrm{pDBIN}$ line to indicate that an I/O read operation is to take place. U195 inverts the pDBIN line to produce $\overline{\mathrm{DBIN}}$ at U156 pin 2.

Since pins 1 and 2 of U156 are both low, pin 3 of this OR gate also goes low to enable U239. The outputs of U239 go from a high-impedance state to the logic level of each switch section. This, in turn, is loaded into the accumulator of the CPU for further processing.

CIRCUIT DESCRIPTION

S-100 Bus Status Circuits

The IEEE-696 S-100 bus contains eight status lines, because there are eight basic types of machine cycles. The Computer uses all but one of these lines. The unused line, sXTRQ*, is still available for use by plug-in boards.

Following the S-100 (proposed IEEE-696) standard, the status lines designations are prefixed with a lower-case "s." All but two of the lines, sWO* and sXTRQ*, assert on logic 1. Briefly, this is what each status line does:
sXTRQ*, pin 58 (sixteen-bit request). This line allows 8 -bit and 16 -bit boards to share the same bus. Since the Computer is an 8-bit machine externally and a 16-bit machine only inside the 8088, this line is kept disabled by connecting U227 pin 18 , to logic 1 .

However, if a true 16-bit CPU board is plugged into the S-100 bus, the Computer can be programmed to give control to this CPU, and this CPU can perform 16-bit transfers with other 16 -bit boards on the bus.

It does this by asserting sXTRQ* and addressing the 16 -bit board (U227 pin 19 is 3 -stated at this time by a low at U182 pin 9). If the addressed device can process 16 -bit words, it asserts another S-100 line called SIXTN*. Next, the data buses are ganged together; lines DO0-DO7 handle even bytes while lines DIO-DI7 handle odd bytes, and the data transfer takes place. (Odd bytes is defined as $A 0=1$, and even bytes as $A 0=0$.

If the device cannot process 16 -bit words, such as memory and I/O on the motherboard and video board, SIXTN* remains high. In this case, DO and DI lines operate normally and the CPU must process the data a byte at a time.

CIRCUIT DESCRIPTION

sM1, pin 44 (op code fetch). This line asserts when the 8085 processor fetches a new instruction from program memory. It returns to logic 0 at the end of the M1 machine cycle. However, when the 8088 is operating, the asserted sM1 line does not guarantee the fetch of a new instruction. It only indicates that a "code access" has been decoded by the 8088. (In future versions of the Z-100 Computers, the 8088 might not assert the sM 1 line at all.)
sOUT, pin 45 (write to output port). This line asserts to indicate that the CPU is going to send data to the addressed output port.
sINP, pin 46 (read from input port). This line asserts to indicate that the CPU is going to read data from the addressed input port.
sMEMR, pin 47 (memory read). This line asserts to indicate that the CPU is going to read data from the addressed memory location.
sHLTA, pin 48 (halt acknowledge). This line asserts when the CPU processes a HALT command and has stopped executing the program.
sINTA, pin 96 (interrupt acknowledge). This line asserts when it is processing an interrupt.
sWO*, pin 97 (memory write). This line asserts when the CPU is going to write data to either memory or an output port.

These lines are derived from the status lines of whichever CPU is active. In the 8088, these lines are $10 / \bar{M}, D T / \bar{R}$, and

When the 8088 is active, the 88 SEL line at U226 pin 13 is logic 1 . This causes the 32×8 PROM to correctly decode the bit pattern on pins 10, 11, and 12 as an 8088 status code. As you will see later, this code is different for the 8085.

CIRCUIT DESCRIPTION

88SEL also 3 -states 85 S 0 and 85 S 1 at pins 1 and 4 of U237. The line from $8510 / \bar{M}$ is in a high-impedance state when the 8085 is disabled, so it does not need a buffer.

U226 decodes the machine cycle status and asserts the correct line on the output. U226 pin 1, through U226 pin 7. When the ALE line goes low, the outputs of U226 are latched into U227.

When the 8085 is active, the 88 SEL line at U226 pin 13 is logic 0 . This causes U227 to correctly decode the bit pattern on pins 10, 11, and 12 as an 8085 status code. U226 decodes this status which is subsequently latched into U227 when ALE goes low.

The following chart shows the status codes of each CPU and what S-100 status line each code affects.

10/M	8085			10/M	DT/R	8088		S-100
	S1	S0	Status			SSO	Status	Status
0	1	1	Op code fetch	0	0	0	Code access	sM1, SMEMR
1	0	1	I/O write	1	1	0	Write I/O port	sOUT, SW0*
1	1	0	I/O read	1	0	1	Read I/O port	sINP
0	1	0	Memory read	0	0	1	Memory read	sMEMR
Z	0	0	HALT	1	1	1	HALT	sHLTA
1	1	1	Interrupt Ack.	1	0	0	Interrupt Ack.	sINTA
0	0	1	Memory write	0	1	0	Write memory	sWO*

$Z=$ High impedance at CPU IO/M 3-state line.

CIRCUIT DESCRIPTION

Wait Timing

The WAIT line at pin 9 of U226 equalizes the timing characteristics between the 8085 and the 8088. It does this by adding the appropriate wait states during a memory or I/O access. The number of wait states depends on the active CPU and the type access, as shown in the chart below.

	Wait Timing	
	8085 Active	8088 Active
Memory Access	1 wait state	0 wait state
1/O Access	2 wait states	1 wait state

U233 pin 5 provides the basic wait timing. When ALE asserts, pin 5 is cleared. After ALE goes low, pin 5 goes high on the next system clock pulse. If the machine cycle is a memory or I/O access, the wait line asserts according to the chart above.

The asserted wait line is inverted by U206A to clear pin 9 of U205. This logic 0 couples directly to the 8085 READY input and indirectly to the 8088 READY input through U236. The active CPU goes into a wait state until the next system clock pulse at pin 11 of U205. Operation then proceeds normally.

The RDY and XRDY lines are S-100 "ready" lines. If either line is low, the CPU goes into a wait state at the end of a machine cycle, as follows.

The ALE line clears U205 at the beginning of each machine cycle. Both RDY and XRDY are normally logic 1 at pin 12 of U205. Unless the wait line is asserted, the next clock pulse will latch U205 pin 9 to a logic 1, ensuring that the active CPU will not generate a wait state during that machine cycle.

CIRCUIT DESCRIPTION

If either RDY or XRDY should go low, U205 pin 9 remains at logic 0 during that bus cycle. This causes the CPU to go into a wait state at the end of the cycle. (See the 8085 and 8088 data sheets in Appendix C for the exact timing relationships.) To see how the Computer uses the RDY line, refer to the "Video Board" (Page 4-56) "Disk Controller" (Page 629), and the "Memory" (Page 2-50) sections in this Manual.

S-100 Bus Control Output Circuits

The five lines of the bus control output circuits determine the timing and movement of data during any bus cycle. The mnemonics of these lines always begin with a lower-case "p." Refer to the 8088 timing waveforms in Pictorial 2-8 as each output line is discussed.
pSYNC, pin 76 (synchronization). This line goes high to indicate the start of a new bus cycle. Basically, it is the ALE signal of the currently active CPU retimed to the rising edge of the system clock.

In the 8088, the ALE line goes high at the beginning of the bus cycle. This couples through U221A to latch a logic 1 on U219 pin 5. Halfway through state T1, the system clock goes high at U219 pin 11. This causes U180 pin 3 (the pSYNC output) to go high. At the same time that pSYNC asserts, U219 pin 8 goes low to clear U219A at pin 1.

During state T2, the next positive-going edge of the system clock latches U219 pin 9 to logic 0; the pSYNC line is no longer asserted and U219A is no longer held cleared.
pSTVAL*, pin 25 (status valid). The line works in conjunction with pSYNC to indicate when the S-100 address and status lines are valid.

CIRCUIT DESCRIPTION

Inverted pSYNC couples from U219 pin 8 to U234 pin 12, and inverted system clock connects to U234 pin 11. Between state T1 and T2, the inverted pSYNC is logic 0 . The rising edge of $\overline{S \Phi}$ latches this onto U234 pin 9, which is buffered through U180B to form the pSTVAL* signal.

On the next rising edge of $\overline{S \Phi}$ between T2 and T3, the inverted pSYNC has returned to logic 1. This is coupled through U234B and U180B to the pSTVAL* line.
pDBIN, pin 78 (data bus in). This is a generalized read strobe that gates data from memory or an input port to the data bus.

The pDBIN signal is derived by NORing CPURD and pSYNC at U206C. This ensures that pDBIN will not assert until after the negative-going edge of pSYNC, which occurs after the negative-going edge of $\mathrm{pSTVAL*}$.
pHLDA, pin 26 (hold acknowledge). This is the hold acknowledge signal; it goes high when both the 8088 and the 8085 are in a hold state. Such a situation can occur if a board plugged into the S-100 bus must take control of the bus, such as when a DMA transfer is to take place.

The device requesting control of the bus asserts the S-100 HOLD* line at U185 pin 11. U186 pin 8 detects this logic 1 and writes logic 1 to $U 187$ pins 9 and 5 . These lines send HOLD commands to the 8085 and 8088.

In our example, the 8085 is already in a hold state, so the 85 HOLD line is already high. However, the 8088 is active. When it detects the asserted 88HOLD line, it finishes the current instruction and indicates a hold acknowledge status by asserting 88HLDA at U186, pin 3.

Pin 4 of U186, the 85HLDA, is already asserted, so U186 pin 17 goes high. This line, HAK, couples through U180D to form pHLDA.

CIRCUIT DESCRIPTION

pWR*, pin 77 (valid write data). This is a generalized write strobe that writes data from the data bus into memory or an output port. It is timed with pSYNC and pSTVAL* to ensure that the data is valid on the DO bus before a write takes place.

The CPU write command is inverted through U220 pin 12 and applied to U235 pin 13, a three-input NAND gate. The pSTVAL* line connects to pin 1 of this gate and prevents a write from taking place until the address lines are stable. The inverted pSYNC, at U235 pin 2, ensures that a pulse does not occur on the pWR* line before data is valid on the D0 bus.

CDSB* and MWRT, pins 19 and 68 (control disable and memory write). These lines are not control output lines but are associated with them.

Asserting the CDSB* line 3-states U180 to disconnect the bus control lines. This situation can happen if another CPU board that is plugged into the S-100 bus takes control of the bus. If so, that board must supply the output control signals.

While pWR^{\star} is a generalized write strobe for both memory and output ports, MWRT is a write strobe for memory write cycles only. In the Computer, it is used in the memory circuits and on the video board. This signal is derived by NORing pWR* and sOUT (from the status circuits) at U216C.

CIRCUIT DESCRIPTION

Memory

Memory Control Latch

The memory control latch, U176, determines the addressing of RAM and ROM. It also sets the status of the parity circuits.

The CPU accesses this latch by writing the correct byte to port OFCH. This is done by asserting the MEMCTRLCS line at U159-11 in the I/O port decoder. This signal is then applied to U221D-13, an OR gate.

The CPU next places the data byte to the D inputs of U176, a hex D-type flip-flop, and then asserts pWR* on the S-100 bus. U214-3 couples this control signal through U214-3 to U221-12 and drives U221-11 low.

When the data byte on the D-inputs of U176 has had time to stabilize, U221-11 goes high; clocking the data bus signals into U176 on the positive-going edge.

The bit pattern that was on the data bus is now latched onto the Q outputs of U176, setting the type of memory map addressing (MAPSEL0 \& MAPSEL1), monitor ROM addressing (PROMO \& PROM1), and parity operation (ZEROPAR \& KILPAR).

See the appropriate circuit description and the block diagram description to see how these circuits are affected.

Dynamic Memory

General

The dynamic memory consists of five major circuits: (1) the memory itself, which can be $64 \mathrm{~K}, 128 \mathrm{~K}$, or 192 K ; (2) the address multiplexer, used to convert the 16-bit address bus to the 8 -bit address bus required by the dynamic RAMs; (3) the memory map decoder, used to select the correct 64 K bank of memory within 192K; (4) the refresh circuits; and (5) the parity circuits.

CIRCUIT DESCRIPTION

Dynamic RAM

The Computer uses $64 \mathrm{~K} \times 1$ bit dynamic RAM chips for main memory. There is one IC per bank per bit position, so that eight ICs make up 64 kbytes. For the first 64 K bank, $\mathrm{U} 109=$ MD0 and $\mathrm{U} 102=$ MD7.

Three sets of these RAMs make up the 192K address space:

$$
\begin{aligned}
& \mathrm{U} 109-\mathrm{U} 102=1 \text { st } 64 \mathrm{~K} \\
& \mathrm{U} 125-\mathrm{U} 118=2 \text { nd } 64 \mathrm{~K} \\
& \mathrm{U} 145-\mathrm{U} 138=3 \mathrm{rd} 64 \mathrm{~K}
\end{aligned}
$$

To read or write memory, the address circuits select the correct RAM location by placing the lower eight bits of the address onto lines MAO-MA7. One of the three RAS lines, 0-2, asserts to latch this address into RAM. The upper eight bits of the address are placed onto MA0-MA7. After waiting a short time for the lines to settle, the CAS lines assert to latch the byte at MD0-MD7 into RAM.

When memory is being read, pin 3 of all the RAM chips are logic 1. This places the addressed data onto pin 14 of each RAM chip. U110 pin 12 then enables U133 to couple this data to the $\mathrm{S}-100$ bus and to the CPU.

If it is writing memory, the CPU enables U132 at pins 1 and 11. U132 couples the data from the S-100 bus to pin 2 of each RAM chip. U110 pin 13 asserts $\overline{\text { WE }}$ at pin 3 of each RAM chip to latch the data into the addressed memory location.

CIRCUIT DESCRIPTION

Address Multiplexer

The address multiplexers consist of U146 and U128. These ICs couple the lower eight bits of the 16-bit address bus to MAO-MA7 during RAS time. They next pass the upper eight bits during CAS time. Multiplexing permits keeping the pin count down on the RAM ICs.

When the CPU starts to access memory, line TAP1 is logic 0 . This couples the A -inputs of the multiplexer to the Y -outputs at MAO-MA7. These lines now hold the lower eight bits of the 16 -bit address bus. U110, in the memory map circuits, generates a $\overline{\mathrm{RAS}}$ signal to latch this address into RAM.

Forty nanoseconds later, TAP1 goes high. This couples the B-inputs of the multiplexer to MAO-MA7, which are the upper eight bits of the address.

Forty nanoseconds after TAP1 asserts, TAP2 at pin 5 of U110 goes high. This clocks MA0-MA7 into the CAS latches.

Another line going to the multiplexers is $\overline{\mathrm{BCYC}}$. This line is low to indicate that a bus cycle is taking place. The memory is going through a bus cycle whenever the CPU is accessing the memory. $\overline{B C Y C}$ asserts pin 15 of each multiplexer IC to activate their outputs.

If a memory refresh is taking place, $\overline{\mathrm{BCYC}}$ is high and tri-states the multiplexers. At the same time, it activates the outputs of U126, part of the refresh address generator. U126 places a refresh address on MA0-MA7. All three RAS lines assert to refresh the same location in each 64 K bank.

If the CPU attempts to read or write memory during refresh, the refresh circuits place the CPU into a wait state until refresh is complete. (See "Refresh Circuits," Page 2-49.)

CIRCUIT DESCRIPTION

Memory Map Decoder

The memory map decoder is made up of U111, U110, and U173. It performs three major functions: (1) decodes the address bus to select the correct 64 K bank, (2) provides read/ write control lines for the RAM and the data bus, and (3) performs correct addressing and control during refresh. These functions are performed as explained below.

U111 selects the correct 64 K bank for any memory address below 192K. The address is determined by the map select lines and BA16 and BA17. The map select lines will be covered later. For now, assume the standard configuration (MAPSELO $=$ MAPSEL1 $=0$; contiguous RAM from 0 to 192K).

Under normal operation, BA16 and BA17 select the banks as follows:

BA17	BA16	Condition
0	0	0 to $64 \mathrm{~K}, \overline{\mathrm{RENO}}$ asserted.
0	1	$(64 \mathrm{~K}+1)$ to $128 \mathrm{~K}, \overline{\mathrm{REN} 1}$ asserted.
1	0	$(128 \mathrm{~K}+1)$ to $192 \mathrm{~K}, \overline{\mathrm{REN} 2}$ asserted.
1	1	U111 disabled.

The last condition is necessary because BA17 allows addressing up to 256 K . Since there is no on-board RAM betweei $192 \mathrm{~K}+1$ and 256 K , U111 must be disabled. However, this does not prevent filling this memory range with a 64 K board on the $\mathrm{S}-100$ bus.

Also, U111 is disabled if the CPU addresses a location above 256K. In this case, the DECODEN line at pin 14 goes high to place all of U111's outputs to logic 1. $\overline{\mathrm{DECODEN}}$ is controlled by U173 and will be discussed later.
$\overline{\text { BSEL }}$ at U111 pin 9, asserts whenever $\overline{\text { RENO }}, \overline{\text { REN1 }}$, or $\overline{\text { REN2 }}$ asserts. This line is used in the refresh circuits and will be discussed later.

CIRCUIT DESCRIPTION

The three row-enable lines connect to pins 1, 2, and 3 of the PAL at U110. This IC decodes these, and other inputs, to assert $\overline{R A S}, \overline{C A S}, \overline{W E}$, and MDGATE at the appropriate times.

Basically, RAS asserts under the Boolean condition: $\overline{\text { RASn }}=$ (RENn*TAP1) $+\left(\overline{\operatorname{RENn}}{ }^{*}\right.$ STC*RREQ $\left.^{*}\right)+\left(\overline{\mathrm{BCYC}}{ }^{*}\right.$ TAP1 $) . \quad$ CAS asserts when: $\overline{\mathrm{CAS}-\mathrm{A}}=\overline{\mathrm{CAS}-\mathrm{B}}=\overline{\mathrm{CAS}-\mathrm{C}}=$ ($\overline{B_{C Y C}^{*}}{ }^{*}$ TAP2*WO $\left.^{*}\right)+\left(\overline{B_{C Y C}}{ }^{*}\right.$ TAP2*PHANTOM $)$.

The PHANTOM line permits placing other memory devices into the same address space as the dynamic RAM. When PHANTOM is asserted, the CPU can access the alternate memory device without disturbing the on-board memory. For CAS in the read mode, the addressed memory location is placed on the memory outputs but does not reach the S-100 bus. This is because DIEN is logic 1 on U133 pin 1, tri-stating this buffer. During memory write, PHANTOM prevents $\overline{\mathrm{WE}}$ from asserting, causing a dummy read cycle.

Refer to the timing diagram in Pictorial 2-10 as the basic timing cycle is discussed.

Assume that the CPU is addressing a location in the first 64 K of memory. STC goes high during bus cycle 2 ; TAP1 $=0$ so the logic 0 on $\overline{\text { RENO }}$ couples to U110 pin 9, the $\overline{\text { RAS0 }}$ signal. The lower eight bits of the address are latched into RAM ICs U102-U109.

Forty nanoseconds later, TAP1 goes high. This line causes the address multiplexers to place the upper eight bits of the address onto lines MAO-MA7.

In another 40 nS , TAP2 goes high, causing the CAS lines to assert. The $40-\mathrm{nS}$ delay ensures that the address on MAOMA7 has had time to settle. Since the $0-64 \mathrm{~K}$ bank is the only one previously loaded by $\overline{\text { RASO }}, \overline{\text { CAS-A }}$ latches the upper eight bits of the address into U102-U109. The other two banks are not affected by $\overline{\mathrm{CAS}} \mathrm{B}$ and $\overline{\mathrm{CAS}} \mathrm{C}$.

Pictorial 2-10
Memory circuit waveforms

CIRCUIT DESCRIPTION

The memory location pointed to by the address is now written to or read from the CPU. The two remaining outputs of U110 are the write-enable line at pin 13 and the memory data gate at pin 12. Write-enable asserts whenever there is a memory write during a bus cycle at TAP1 or TAP2 time. MDGATE asserts when TAP1 or $\overline{\mathrm{BCYC}}$ is asserted. It blocks data from the S-100 bus during a memory write or a refresh operation.

The PAL (U173) is the final IC in the memory map decoder circuits. This IC provides an enable line to U111 ($\overline{\mathrm{DECODEN}}$), an enable line to U133 ($\overline{\mathrm{DIEN}}$) and two reset lines to the refresh circuits ($\overline{\text { CLRRR }}$ and $\overline{\text { CLRMR }}$). These lines have the following definitions:

DECODEN, pin 17 (decode enable). This line is normally low for CPU accesses to any memory locations below 256K. If above 256 K , one of the extended address lines (BA18BA23) will be high which will raise DECODEN. This, in turn, forces all of the outputs of U111 to go high.

DIEN, pin 14 (data in enable). This line enables the outputs of U133 during a memory read to send the addressed data to the CPU. This line goes low when $\overline{\mathrm{DBIN}}=0, \mathrm{MDENB}=1$, and PHANTOM $=0$. MDENB asserts whenever the CPU is accessing the dynamic RAM, which is discussed later. PHANTOM and $\overline{\mathrm{DBIN}}$ are the inverted versions of the $\mathrm{S}-100$ signals, PHANTOM* and pDBIN.

CLRRR, pin 16 (clear refresh request). This line resets the refresh request circuits at the end of a memory refresh cycle. This line asserts when TAP1 $=0$, TAP2 $=1$, and $\mathrm{BCYC}=0$.

CLRMR, pin 15 (clear memory request). This line clears the memory request circuits at the end of a CPU memory read or write cycle. It asserts when TAP1 $=0, \mathrm{TAP}=1$, and $B C Y C=1$.

CIRCUIT DESCRIPTION

Refresh Circuits

The refresh circuits consist of a refresh clock, U147-U148; the refresh request circuit, U152; memory request, U167; timing and control ICs U144 and U150; control circuits to the CPU, U168-U158, U150, and U165; and the refresh address generator, U127 and U126.

These circuits refresh the memory when the CPU is not accessing RAM. This is necessary because it is a characteristic of dynamic RAM to lose the contents of its memory if not accessed approximately once every 2 ms .

The refresh circuits contain arbitration logic. If these circuits generate a refresh while the CPU is accessing memory, they wait until the CPU is done before gaining control of the RAM. If the CPU attempts to access memory during a refresh operation, the refresh circuits put the CPU into a wait state until refresh is complete. Also, the refresh circuits provide timing for RAS, CAS, BCYC, and other memory functions for both refresh and CPU operation, as explained below.

U147, a 16 -us oscillator, generates the refresh clock. The first negative-going pulse latches U148 pin 5 to logic 1, starting the refresh request. The signal at U168 pin 11 retimes the refresh request to the system clock.

The logic 1 from U148 pin 9 connects to U151 pin 2. Two other lines to this gate must go to logic 1 before the refresh request can take place. They are the start-write (STWRT) line in the memory request circuits and the $\overline{\text { SYNC }}$ line from the $\mathrm{S}-100$ bus. If either line is low, then the CPU is about to perform a memory write, or the start of a bus cycle is taking place. As a result, U151 pin 12 stays at logic 0 and a refresh request does not take place.

If $\overline{\text { STWRT }}$ and $\overline{\text { SYNC, are high, }} \mathbf{S \Phi}$ latches U152 pin 5 to logic 1 , causing a refresh request. However, the memory circuits do not acknowledge this request if the CPU is executing a memory read cycle. This is because U144 and U150 time

CIRCUIT DESCRIPTION

the signal so that BCYC (bus cycle active) at U150 pin 9 cannot change to its $\overline{\mathrm{BCYC}}$ state until memory read is completed. This is explained in more detail later.

If, however, no memory read or write is taking place during the refresh request, the logic 0 at U150 pin 12 is latched into U150 pin 9 on the next positive-going signal from U159 pin 3. This signal is generated by the delay line at U144 and is explained in more detail later.

BCYC, now logic 0,3 -states the address multiplexer, U146 and U148, and places the refresh address generator, U127 and U126 onto MAO-MA7. To allow the refresh address generator time to stabilize, U144 delays asserting TAP1 by 40 ns .

Since BCYC is low, U110 in the memory mapping circuits recognizes that this is a refresh cycle. When TAP1 goes high, all three $\overline{\mathrm{RAS}}$ lines assert. This refreshes the entire row pointed to by U126, in each bank.

If the CPU attempts to access memory at this time, U150 through U158 puts the CPU into a wait state. When refresh occurred, $\overline{B C Y C}$ went high to latch U150 pin 5 to logic 1. REFWAIT stays asserted for four clock cycles and is then cleared by the low at U150 pin 1.

If the CPU attempts to write or read memory, $\overline{M E M W R}$ or MEMR assert at pins 10 and 9 of U170. BSEL, at pins 12 and 13 of U130 is also asserted because the CPU has asserted REN0, $\overline{R E N} 1$, or REN2 at U111. Since pins 4 and 5 of U169 are both logic 1, MDENB asserts.

With both MDENB and REFWAIT high, RDY goes low and the CPU goes into a wait state until the refresh cycle is finished, at which time REFWAIT goes low.

CIRCUIT DESCRIPTION

MDENB asserts only when the CPU is attempting to access the on-board dynamic RAM. If the CPU is accessing a memory board on the S-100 bus, it will not affect the on-board RAM, so there is no need to put the CPU in a wait state during refresh.

To get an idea of timing relationships, refer to the waveforms in Pictorial 2-10 as you read the following.

Assume that a memory read to an address in the $0-64 \mathrm{~K}$ range takes place. U154 pin 5 goes high during BS2 because $\overline{M E M R}, \overline{B S E L}$, and SYNC are asserted. Signal pSTVAL* asserts shortly afterward to clock the RDREQ signal on pin 6 of U167 to logic 0 . U169 pin 2 is logic 1, and because pin 8 of U144 is logic 0 , pin 1 of U169 is logic 1.

The above process asserts STC and causes signal RAS0 on pin 19 of U110 to assert. The lower eight bits on MAO-MA7 are loaded into the RAM's row address latches.

STC also drives U144, a 200 -ns delay line with 40 -ns taps. TAP1 asserts 40 ns after STC and causes U146 and U128 to place the upper eight bits of the 16 -bit address onto MA0MA7. Forty nanoseconds after that, TAP2 asserts and causes $\overline{\text { CAS-A }}$ to assert at U110, pin 15. Since this is a read cycle, U110 pin 13 is logic 1 , and ICs U102-U108 place the addressed data onto pin 14 of each IC. This data is then sent to the CPU through U133.

After TAP2 asserts, the delay line asserts outputs $60 \%, 80 \%$, and OUT at 40 ns intervals. When OUT goes high, it drives STC low through U166E and U169 pin 1. Forty nanoseconds later, TAP1 goes low to generate a clear memory request pulse ($\overline{\mathrm{CLRMR}}=\overline{\mathrm{TAP1}} * \mathrm{TAP2}^{*} \mathrm{BCYC}$).

CLRMR clears U174 to drive pin 6 of U170 low, as shown on the solid line on the waveforms, and the read cycle is finished. A write cycle operates in the same manner.

CIRCUIT DESCRIPTION

Now, assume that a refresh request occurs during the read cycle previously discussed. U148 pin 9 in the request circuits latches high. Also, U151 pin 13 is high since this is not a write operation. However, $\overline{\text { SYNC }}$ is low during the first part of the bus cycle, so U151 pin 12 is low.

At the end of SYNC, pin 12 of U151 goes high and pin 5 of U152 (signal RREQ) goes high on the next system clock pulse (end of BS2 on the waveforms). $\overline{\text { RREQ }}$ goes low and holds U170 pin 6 high at the end of the read cycle. This is shown as the dashed line in the waveforms.

The low forced on STC by OUT ripples through the delay line and forces STC high during time REF1. This clocks $\overline{\text { RREQ }}$ into U150 pin 9, driving BCYC to logic 0. In turn, BCYC 3states the address multiplexer and places the contents of the refresh address generator into MAO-MA7.

When TAP1 goes high, all three $\overline{\text { RAS }}$ lines assert to refresh memory as described previously. The $\overline{R A S}$ lines return high at the end of TAP1 time and U173 asserts the clear refresh request line ($\left.\overline{\mathrm{CLRRR}}=\overline{\mathrm{TAP1}}{ }^{*} \mathrm{TAP2}^{*} \overline{\mathrm{BCYC}}\right)$. This resets U148 and U152 in the refresh request circuits. CLRRR also increments the refresh address generator at U127, pin 1.

Meanwhile, as the logic 1 ripples through the delay line (shown in dotted lines on the waveforms), the 80% tap is ORed with the inverted 60% tap to pulse U168 pin 3 at time REF3. This places a logic 1 on U150 pin 9, restoring normal bus cycle operation.

The bottom waveforms show what takes place in the ready circuits during a refresh operation. At the start of the refresh cycle, $\overline{B C Y C}$ goes high to clock REFWAIT high. The system clock at U165 pin 9 clocks this through to signal $\overline{4 \mathrm{Q}}$ of U176, which clears REFWAIT at U150, pin 1. The four clock periods that REFWAIT is high mark the time required for the refresh circuits to activate, refresh the memory, and return to their quiescent states.

CIRCUIT DESCRIPTION

As described before, if the CPU attempts to read or write the onboard memory during this time, MDENB will go high and force RDY low, generating a wait state. After REFWAIT goes low, RDY goes high, allowing a normal bus cycle to occur.

Note that the refresh circuits do not generate a refresh request every time the CPU is not accessing memory. Refresh happens only once every $16 \mu \mathrm{~s}$. The CPU is running about 80 times faster than this and can perform many instruction cycles between refreshes. Since the RAMs can go for about 2 ms before requiring refresh, there is no danger of losing memory.

Parity Circuits

The parity circuits consist of U153, U101, U117, U137, and U152. These circuits maintain the parity status for each byte in the 192K of RAM. If a memory location's parity is in error, then the parity circuits send an error signal to the CPU.

U101, U117, and U137, are $64 \mathrm{~K} \times 1$ RAMs and store 1 bit of parity information for each address location of RAM. These RAMs are addressed by $\overline{R A S}$ and $\overline{\mathrm{CAS}}$ in the same way as the other RAMs. However, data transfers take place through U153 instead of the data bus. U153 is a 9-bit odd or even parity generator and checker that processes and maintains the parity status.

During a memory write, the data written into RAM is present at pins 1 through 8 of U153. Pin 14 of each parity RAM is in a high impedance state, so U153 pin 4 is logic 1 through R107.

The following truth table show the levels of the odd and even outputs for the number of high inputs:

CIRCUIT DESCRIPTION

| Number of inputs
 that are high. | | Outputs
 Even | | Odd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

So if there is an odd number of high bits in the data byte, the logic 1 on pin 4 of U153 makes the number even. U153 pin 5 responds by going high. If there is an even number of data bits in the data byte, pin 5 of U153 stays low, so the total bit count remains even. U153 pin 5 couples the 1 or 0 through the normally-enabled gate at U151 pin 4 to the data input pins of the parity RAMs.

The $\overline{\text { ZEROPAR }}$ line at $U 151$ pin 5 is normally high. This can be brought low to force all addressed parity RAM locations to 0 , regardless of the byte status. It is brought low by clearing data bit D4 to logic 0 and outputting the bit to port $0 F C H$, the memory control latch. (ZEROPAR is used as a quick test to see if the error-detection circuits work.)

The odd-parity output goes to U152, pin 11. During a memory write, pin 11 is low, preventing an erroneous error signal from being generated. For the same reason, U151 pin 9 remains low for a memory refresh.

During a memory read, data output from the addressed RAMs are present at the inputs of U153. The corresponding parity bit, from U101, U117, or U137, is placed on U153 pin 4. If the bit pattern that was previously written into data RAM and parity RAM has not changed, the total number of high bits is always even. So U153 pin 6 remains low, which is the noerror condition.

If, however, the bit count is an odd number - due to a chip failure or soft error, for example - then U153 pin 6 goes high. When TAP2 goes low, pin 9 of U152 is latched to logic

CIRCUIT DESCRIPTION

1 and asserts the S-100 ERROR* line at U158 pin 6. This generates an error interrupt at U208 pin 18. From here, it is up to the user's software to process the interrupt.

When KILPAR is asserted, U152 is held clear to prevent a parity error interrupt. To assert KILPAR, clear data bit D5 to 0 and output it to port 0FCH, the memory control latch.

Map Selection

Map selection takes place at pins 1 and 5 of U111. These two lines, MAPSELO and MAPSEL1, also go to pins 7 and 8 of U173, but currently are not used by this IC. Depending on the logic state of pins 1 and 5 of U111, plus the address on lines BA12-BA15, the memory map enters one of the four configurations or modes, shown in Pictorial 2-11.

Pictorial 2-11

CIRCUIT DESCRIPTION

Mode 0 is the default configuration, in which memory is contiguous from 0 to 192K.

In mode 1, the first 48 K of bank 0 appears to be swapped with the first 48 K of bank 1 . The two 16 K areas, and the rest of RAM, are unchanged. This configuration may be used for MP/M* while running the 8085 CPU .

In mode 2, the first 48 K of bank 0 appears to be swapped with the first 48 K of bank 2. The two 16 K areas, and the middle 64 K of RAM, are unchanged. This configuration may also be used for MP/M while running the 8085 CPU.

In mode 3, 56 K in bank 0 appears to be swapped with 56 K in bank 1. Four kilobyte buffers above and below each 56 K area remain unchanged, as does the top 64 K bank. This configuration would permit using an extended BIOS when running CP/M-2.2* (8-bit operating system software).

Note that, in all cases, the memory only appears to be swapped from the memories point of view. When the CPU addresses the swapped memory, the memory map decoder merely asserts a different RAS line than it normally would.

For example, assume that the Computer is operating in configuration \#4. If the CPU should write to the byte at the 6 K location, U111 would assert REN1 instead of REN0. The memory at the 70K location will be written to. Bear in mind, however, that as far as the CPU (and the programmer) is concerned, the byte at 6 K was written to.

Address lines BA12-BA15 allow the memory map decoder to keep some sections of memory in place down to 4 K increments.

[^0]
CIRCUIT DESCRIPTION

System Monitor ROM

Addressing

The monitor ROM (U190) controls the operation of the Computer after power-up reset or hard reset. It initializes the necessary I/O ports and determines which CPU will be active in the monitor mode. Though currently 8K, jumpers J101 and J102 allow you to expand this ROM to 32K.

Whenever the CPU fetches an instruction from the ROM, it asserts $\overline{\mathrm{DBIN}}$, pin 22, the inverted $\mathrm{S}-100 \mathrm{pDBIN}$ line. This line comes from U195 pin 16.

The CPU also asserts PROMSEL at U161 pin 15, the ROMselect programmable logic array. This IC changes the memory address that the monitor ROM responds to, effectively repositioning it in memory, as explained below.

After power-up or a hard reset, the memory control latch at U176 is cleared by the reset line at pin 1. This places lines PROM0 and PROM1 of U161 (pins 14 and 17) at logic 0.

When both PROM0 and PROM1 are 0, U161 pin 15 asserts whenever the memory read line asserts at U161 pin 18, no matter what the address. Effectively, the monitor appears to be in all of the address locations.

After a reset, the 8085 CPU is selected by the swap circuits and the 8088 is disabled. The program counter of the 8085 starts fetching op codes starting at address 0 in U190. The monitor causes the 8085 CPU to switch itself off and activate the 8088.

When the 8088 is in control, its program counter starts fetching monitor instructions from memory address FFFFOH, 16 bytes below the top end of the 1 Mbyte address space. However, the ROM still appears to be in all of address space.

CIRCUIT DESCRIPTION

The 8088 selects the next operating mode by latching PROM1 to logic 1 and leaving PROM0 at logic 0 . U190 is now located in the top 8 K of the 8088's natural 1 Mbyte address space. This is the location that the ROM is normally in while the Computer is in the monitor mode.

Two other options are available: (1) If $\mathrm{PROM} 0=1$ and PROM1 $=0$, the ROM is placed at the top 8 K of every 64 K page of memory (this is useful for the 8085, which has only a 64 K natural address space); and (2) if $\mathrm{PROMO}=1$ and PROM1 $=1$, the ROM is disabled.

To select one of the above four options, the CPU must output a data byte to port 0 FCH , the memory control latch. Data bit D2 directly affects PROM0 and D3 affects PROM1.

The PHANTOM* Line

The PROMSEL line from U161 also connects to U194, pin 5, an open collector buffer that connects to the PHANTOM* line on the $\mathrm{S}-100$ bus. The PHANTOM* line allows overlapping blocks of memory on the S-100 bus. When properly decoded, the PHANTOM* line disables one block of memory while enabling another.

In this case, whenever the monitor is selected by PROMSEL, the PHANTOM* line goes low and all RAM locations are disabled. Thus, when both PROM0 and PROM1 are 0 at powerup, the CPU reads from ROM but writes to RAM.

Since you can disable the monitor by raising both PROMO and PROM1 to logic 1, it is possible to have continuous read/ write memory from address 0 to the top end of 16 Mbytes (technology permitting). However, you would have to supply your own monitor routine.

CIRCUIT DESCRIPTION

Address/Data Circuits

General

Please refer to Pictorial 2-12 while you read the following paragraphs.

As stated in the discussions on the 8085 and the 8088, the address and data lines of these CPUs are multiplexed onto the same bus. That is, first the address is present on the bus, then the data. A control line called the address line enable, or ALE, separates these signals and sends them to their appropriate latches.

Under normal operation, the CPU selection logic enables either the 8085 CPU or the 8088 CPU . Although the address/ data lines of these processors are connected in parallel, the bus of the disabled processor is 3 -stated, and so does not interfere with the active CPU.

Since the 8085 and 8088 timing diagrams are similar, the 8088 waveforms may be used for the following description.

Pictorial 2-12

CIRCUIT DESCRIPTION

Address Latches

At the beginning of clock cycle T1, the 8088 asserts the 88ALE line at U211 pin 25. This signal couples through the OR gate at U221 pin 1 to pin 11 of U197 and U196, which are two 3-state, octal, D-type latches.

A short time later, the 8088 places address data on the address lines. The lower eight bits, AD0-AD7, go to U197; and the upper eight bits, PA8-PA15, go to U196. These latches are transparent as long as the ALE line is high; that is, the output logic levels are the same as the input logic levels. At the end of T1, ALE goes low to latch the outputs with the address.

The line going to pin 1 of U197 and U196 provides S-100 compatibility, allowing another card to take control of the bus. If an external processor or DMA device were plugged into one of the S-100 slots, and it was to take control of the Computer, it would assert ADSB* low. This would 3-state U197 and U198, thus blocking off the 8085 and 8088.

CIRCUIT DESCRIPTION

Data Latches

If the CPU is writing data, either to memory or to an output port, it asserts the $\overline{W R}$ line at U211 pin 29. This signal is inverted by U220 pin 12 to form the CPUWR control signal. CPUWR connects to U198 pin 11 and holds this latch transparent as long as it is high.

During time T3, the CPU places the data on bus lines ADOAD7, which couple through U198 to its outputs. At time T4, CPUWR goes low to latch this data onto DO0-DO7. From here, the data is sent to the location pointed to by the address on U197 and U196.

U198 pin 1 is the inverted version of DODSB* from the S-100 bus. This signal functions in the same manner as ADSB*.

If the CPU is reading data, either from memory or an input port, its timing is the same as when it writes data. However, this time it asserts the $\overline{\mathrm{RD}}$ line at pin 32. This control line is inverted by U220 pin 4 to form RD.

Control line RD connects to U235 pin 11. The other two inputs to U235, $\overline{8259 A C S}$ and $\overline{8259 A C M}$, are from the interrupt circuits. These two inputs go high when an interrupt occurs. Since RD is high, pin 1 of U217 is low, and this 3-state octal buffer passes the data on bus lines DI0-DI7 to AD0-AD7. At time T3, the CPU assumes that the data is stable and loads it into its accumulator.

CIRCUIT DESCRIPTION

Extended Addressing

The extended addressing circuits; U193, U212, and U213; maintain S-100 compatibility by making it possible for the CPU to address up to 16 Mbytes of memory.

When the 8088 is active, U193 pin 1 is high and couples PA16-PA19 to pins 3, 4, 7, and 8 of U213. When ALE asserts at U213 pin 11, these address values are coupled over to A16-A19. Lines A20-A23 are logic 0 because the outputs of U212 have not changed from their cleared condition. In this case, the 8088 is operating normally and can directly address its natural 1-M range.

To access the address space above 1 M , the CPU asserts HI-ADCS from the I/O port decoder (U159 on MB2). Then $\overline{\text { CPUWR }}$ is asserted causing U221 pin 6 to go low. Finally, the extended address is placed on lines AD4-AD7 at U212. (Lines AD0-AD3 are blocked by U193.)

At the end of that cycle, the $\overline{\text { CPUWR }}$ line goes high and latches AD4-AD7 onto the outputs of U212.

At the beginning of the next machine cycle, when ALE again asserts, the outputs of U212 latch into U213. For example, if U213-12 is logic 1 and pins 15,16 , and 19 are 0 , the CPU is in the 1 - to $2-\mathrm{M}$ range.

These circuits work the same way if the 8085 is the active CPU. The only difference is that 88SELD at U193 is low so that the lower four bits of U212 couples directly to U213. This allows the 8085 to address memory between 64 K and 1 M .

Note, however, that once the CPU jumps to these higher ranges it cannot return unless there is a program there to tell it to return. This is because U212 and U213 are latches and can only be changed by software that writes to the highaddress port (or through a hard reset). One way around this is to preload a program in higher memory by using direct memory access.

CIRCUIT DESCRIPTION

Interrupt Circuitry

General

Maskable interrupts are routed through the IC at U208, an 8259A programmable interrupt controller (PIC). This IC features an 8-level priority controller and programmable interrupt modes that allow using this IC with either the 8085 or the 8088. Also, individual interrupt lines can be masked without affecting those above or below it. (See the 8259A data sheets in Appendix C for detailed information.)

Before the 8259A can be used, the CPU must initialize it. The CPU does this by outputting the programming information to ports 0 F 2 H and 0 F 3 H for the master, and to 0 FOH and 0F1H for the slave. When it accesses these ports, the I/O port decoder asserts 8259ACSM for the master PIC (U208), and 8259ACSS for the slave PIC (U209). In addition, it asserts BAO to select the desired register inside the IC. Once the data to be written has settled on the data pins, D0-D7, the CPU asserts the $\overline{\mathrm{CPUWR}}$ line at pin 2 to perform the write.

To read the status registers of the 8259A, the CPU performs the same steps as described above, except it asserts the $\overline{\text { CPURD }}$ line at pin 3.

CIRCUIT DESCRIPTION

As previously mentioned, U208 is the master PIC and handles all of the main board and video board interrupts. These interrupts are shown in the chart below in order of priority (highest first).
Level Description
$0 \quad$ ERRORINT: Parity error or S-100 pin 98 (error line).
1 SWAPINT: Processor swap interrupt.
2 TIMRINT: Programmable timer interrupt (Out 0 or Out 2).
3 SLAVE: S-100 vectored interrupt from the 8259A slave IC at U209.
4 EPCIAINT: Serial port A interrupt.
5 EPCIBINT: Serial port B interrupt.
6 KEYINT or DSPYINT: Interrupt from the keyboard, vertical sync, or light pen circuits.
$7 \quad \overline{\text { PRINTINT: }} \mathbf{~ I n t e r r u p t ~ l i n e ~ f r o m ~ t h e ~ p a r a l l e l ~ p r i n t - ~}$ er port.

Maskable Interrupt Sequence

Whenever one or more of these lines goes high, U208 evaluates its priority and sends an interrupt request to the CPU through U158 pin 8. The 8259A also asserts the INT* line if the CPU is currently processing a lower-priority interrupt.

Assume that a master interrupt has occurred; that is, one of the interrupt lines other than pin 21 of U208 (INT3) has been asserted. If the CPU does not have masked interrupts, it responds in one of two ways, depending on whether the active processor is the 8085 or the 8088.

CIRCUIT DESCRIPTION

If the 8085 is active, the following sequence occurs:

1. The CPU asserts the $\overline{N T A}$ line at pin 26 (of 8259A).
2. U208 places the 8080/8085 CALL instruction (0CDH) onto the data bus at pins 4 through 11.
3. The 8085 decodes this call instruction and determines that it requires two more bytes. It then sends two more $\overline{\text { INTA }}$ signals to U208.
4. When U208 receives the second $\overline{\mathbb{N T A}}$, it sends the low byte of the vector address to the CPU. When it receives the third INTA, it sends the high byte of the vector address to the CPU. (The vector addresses must be programmed into the 8259A during the initialization process.)
5. After saving its current location in stack, the CPU jumps to the address supplied by the 8259A to process the interrupt. When it finishes, the CPU returns to the location saved in stack and continues the program it was processing before interruption.

When the 8088 CPU is active, the 8259A responds somewhat differently to an interrupt acknowledge:

1. The CPU asserts the $\overline{\mathrm{NTA}}$ line at pin 26; the 8259A does not respond at this time.
2. The CPU again asserts $\overline{\mathbb{N T A}}$ on the next machine cycle.
3. The 8259A places a byte on D0-D7 that respresents the interrupt type. The interrupt type is an 8-bit number that depends on which interrupt line caused the interrupt.

CIRCUIT DESCRIPTION

4. The CPU multiplies the type number by four to find the correct location in the vector table.
5. The CPU saves its current location in stack and loads the addressed vector table data into the code segment register and instruction pointer. It then processes the service routine pointed to by these registers.
6. When it is done, the CPU returns to the program that it was processing before the interrupt took place.

The slave PIC at U209 processes the S-100 vectored interrupt lines. If one of these lines is asserted, U209 pin 17 goes high to cause a level-3 interrupt at U208 pin 21. This, in turn, sends an interrupt request to the CPU through U158C. When the CPU responds, it asserts pin 26 of U208 and U209.

This time, the master does not place the vector information onto the data bus. Instead, it enables U209 through the cascade lines at pins 12, 13, and 15. U209 then places the vector information onto the bus.

If no interrupt request is present at the time the CPU sends its first $\overline{N T A}$ signal (i.e., the request duration was too short), the 8259A issues an interrupt level 7. Both the vectoring bytes and the CAS lines appear as if an interrupt level 7 was requested.

CIRCUIT DESCRIPTION

Nonmaskable Interrupt Sequence

The nonmaskable interrupt cannot be blocked by software. When the rising edge of the NMI pulse is present at the CPU, the processor must finish its current instruction and service the interrupt request.

The NMI circuits consist of U156C, U156B, and surrounding components. There are two signals that couple to these circuits, NMI* and PWRFAIL, both from the S-100 bus.

NMI* is a general S-100 bus nonmaskable interrupt line. It can be used by S-100 boards to signal the CPU of a catastrophic event, such as imminent loss of power, memory error, or bus parity error.

PWRFAIL* is a dedicated line that asserts if system power failure is imminent. If asserted, the line must stay low until the POC* (power-on clear) line is activated. This line is tied to logic 1 through a 4700Ω resistor on the $\mathrm{S}-100$ bus. Both hardware and software must be provided to use this line. PWRFAIL* can be selected or disabled by the jumper at J104.

CIRCUIT DESCRIPTION

Interrupt Routing

The dual-D flip-flop at U202 retimes the maskable interrupt and applies it to U189A and U189B. If the 8085 is the active CPU, U189A couples the interrupt request to U210 pin 10. If the 8088 is active, U189B routes the request to U211 pin 18.

If an NMI occurs while the 8085 is active, U189D sends it to the TRAP input at U210 pin 6. If the 8088 is active, U189C sends the interrupt to U211 pin 17.

If either an interrupt request or an NMI occur, U156B asserts the NMINT line. This works in conjunction with the interrupt mask bit (MSK) in the processor swap port to force the 8088 into the active state. If MSK is low or NMINT is low, then NMINT has no affect; if MSK is high and NMINT is high, NMINT causes U210 to be disabled and U211 to be enabled.

CIRCUIT DESCRIPTION

Keyboard

General

The keyboard circuits are designed around the 8041A universal peripheral interface (UPI) at U204. This IC is a dedicated 8 -bit microcomputer with internal RAM and ROM. The RAM is 64×8 bits while the ROM is 1024×8 bits.

The pin-out of the 8041A is described in the following paragraphs. (For more information, see the 8041A data sheet in Appendix C, Pin-Out Description.)

D0-D7, pins 12-19 (data bus). These are 3-state, bidirectional data bus lines used to interface the UPI to the Computer data bus. The CPU uses this bus to read the code of the pressed key, read UPI status information, and to write command words to the UPI.
$\overline{\mathbf{C S}}$, pin 6 (chip-select line). When the CPU addresses the keyboard circuits at ports 0F4H and 0F5H, the I/O port decoder asserts line KEYBDSEL. This activates U204.

A0, pin 9 (address line 0). This is an address input used by the Computer to indicate whether the byte transfer to DO$D 7$ is data $(A 0=0)$ or a command ($A 0=1$). This signal is derived from the buffered address line 0 (BAO) from U161, pin 18.
$\overline{\mathrm{RD}}$, pin 8 (read data line). When this line is asserted, the UPI transfers its internal data to the DO-D7 lines. The CPU can then load this data into its accumulator.

WR, pin 10 (write data line). The CPU places data on pins D0-D7 of the UPI. WR is then asserted by the CPU to load the data into U204.

RESET, pin 4 (reset input line). This line resets the UPl's status flip-flops and sets the program counter to 0 .

CIRCUIT DESCRIPTION

XTAL1 and XTAL2, pins 2 and 3 (clock lines). These lines provide a $6-\mathrm{MHz}$ crystal-controlled clock to the circuits inside the UPI.

P10-P17, pins 27-34 (keyboard row input). These bidirectional I/O lines are programmed as input lines. They connect to ROWO-ROW7 of the Computer's matrix keyboard. When a key is pressed, a pulse from one of the column lines (see P20-P23) is coupled into one of the row lines. U204 notes which row is being strobed and, by checking an internal counter, when it is being strobed.

By noting when the strobe puise occurred, the UPI can tell which column was connected to which row when the key was pressed. From this, it can look up the appropriate key code in ROM and send it to the Computer.

T1, pin 39 (test line 1). When a key is pressed, the UPI checks this line to see if the SHIFT key is also pressed. If so, the UPI jumps to a routine that translates the keypress at ROW0-ROW7 to its appropriate shifted code if it has one.

T0, pin 1 (test line 0). When a key is pressed, the UPI checks this line to see if the CONTROL key is also pressed. If so, the UPI jumps to a routine that translates the keypress at ROW0-ROW7 to its appropriate control code if it has one.

P20-P23, pins 21-24 (keyboard column scan strobe). These bidirectional I/O lines are programmed as outputs. P20 and P21 form a binary counter that counts from 0 to 4. These couple to the A and B inputs of U199 and U184, which are two, dual, 2-to-4 line decoders.

P22 connects to the 1C and 2C inputs of the two decoders. When P22 is low, the data at the A and B inputs is routed to the 2Y outputs; when P22 is high, the A and B data is routed to the 1 Y outputs.

P23 connects to the 1G and 2G inputs of U199; it is also coupled to the $1 G$ and $2 G$ inputs of U184 after being inverted. When P23 goes low, it selects U199 and disables U184; when high, it does the opposite.

CIRCUIT DESCRIPTION

The combination of these four lines effectively turns U199 and U184 into a 4-to-16 line decoder. When the UPI causes these lines to count up from binary 0 to binary 15, each column pulses low once, starting at column 0 and ending at column 15. At that point, the cycle repeats.

P24, pin 35 (keyboard data ready). This bidirectional I/O line is programmed as an output. When the UPI has data to be sent to the CPU, it places the data on D0-D7 and then raises P24 to logic 1. This asserts KEYINT, sending a keyboard interrupt to the CPU.

P27, pin 38 (bell and keyclick). This bidirectional I/O line is programmed as an output. It pulses to generate the bell and key click sounds. U183 NORs this line with P21 to generate the bell. When U183 pin 1 goes low, it triggers the one-shot at U218. U218 pin 1 pulses high for about 200 ms to gate pin 3 of U232, the $1-\mathrm{kHz}$ oscillator, through U231 to the speaker.

To generate a key click, the negative edge of P27 directly fires the one-shot at U218 pin 5. Pin 6 of this IC goes high for about 10 ms to gate U232 through U231 to the speaker. Note that the click line asserts whenever the bell does. However, since both circuits use the same oscillator, the click is not heard.

CIRCUIT DESCRIPTION

Timer and E-Clock

Timer and Clock

Timer

The timer circuit is designed around the 8253-5 programmable interval timer IC at U160.

The 8253-5 consists of three counters, a data buffer bus, read/ write logic, and a control word register.

The counters are 16 -bit down-counters with separate clock inputs, gate inputs, and outputs. The clock input causes its associated counter to decrement on the negative-going edge of the clock pulse. The gate input disables its associated counter when brought to logic 0 . The output line asserts when the counter reaches 0 ; whether it asserts high or low depends on how its associated counter is programmed.

The read/write logic allows the CPU to communicate with the 8253-5. It communicates through the data bus buffer when $\overline{\mathrm{CS}}$ and either $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ are asserted. Address lines A0 and A1 connect the data bus buffer to one of the counters or to the control word register.

If it is connected to one of the three counters, the CPU can load a starting count into the counter, or read the current count as the counter is down-counting. This data can be either 8 bits or 16 bits.

The CPU writes to the control word register to load it with an 8 -bit programming byte. This byte selects the counter to be programmed, determines whether the counter is going to count an 8 -bit or 16 -bit word, and if it is going to count in binary or BCD. In addition, the control byte sets the operating mode of the counter.

The 8253-5 timer has six programmable operating modes. Briefly, these are:

CIRCUIT DESCRIPTION

Interrupt on Terminal Count. The output goes to logic 1 when the counter reaches 0 (terminal count).

Programmable One-Shot. Not used since the gate lines are tied to logic 1.

Rate Generator. This is a divide-by-n counter. The output goes low for one clock period, returns high, and counts down the number stored in the counter. When the counter reaches 0 , the output pulses low again and the count starts over.

Square Wave Generator. The output remains high for onehalf the count in the down-counter, and then goes low for the remaining count.

Software Triggered Strobe. After the mode is set, the output is high. When the count is loaded, the counter begins counting. On terminal count, the output goes low for one clock period.

Hardware Triggered Strobe. Not used because the gate lines are tied to logic 1.
(See the 8235-5 data sheet in Appendix C for detailed hardware and software information.)

The CPU selects the timer whenever it reads or writes port 0E4 through 0E7. These ports select counters 0 through 2 and the control word register, respectively. Line $\overline{8253 C S}$, from the I/O port decoder, chip-selects U160 pin 21, while BAO and BA1 select the internal counter or register.

The $\overline{8253 C S}$ line also enables the two OR gates connected to pins 22 and 23 of U160. If the CPU is reading the data in U160, it asserts the DBIN line at U113 pin 12. If it is writing to U160, it asserts $\overline{W R}$ at U113 pin 10.

CIRCUIT DESCRIPTION

The timer is clocked from CNTRCLK, a $250-\mathrm{kHz}$ clock from U192 pin 11. This signal is parallel-connected to the inputs of counter \#0 and counter \#2 at pins 9 and 18 of U160. The output of counter \#0 at pin 11 of U160 couples to the interrupt status latch at pin 11 of U112, and to the input of counter \#1 at U160 pin 15. The counter \#1 output is not connected, but when the CPU detects an interrupt from counter \#0, it can read the current count through the data bus at pins 1 through 7 of U160.

The output of counter \#2, pin 17 of U160, only connects to pin 3 of U112, the other interrupt status latch.

Assume that counter \#2 of U160 is programmed to operate as a software-triggered strobe and that both status latches have previously been cleared. When counter \#2 counts down to 0, U160 pin 17 goes low for one clock period and then goes high again. This positive-going transition latches a logic 1 into U112 pin 5. At the same time, U112 pin 6 goes low to generate a timer interrupt at U175 pin 12.

The CPU responds by asserting the TMRSTATCS line from the I/O port decoder and the data bus input line, $\overline{\mathrm{DBIN}}$. U113 pin 6 goes low to enable U129 at pins 13 and 10. In turn, these two inverters couple the status of pins 9 and 5 of U112 to D0 and D1 of the data bus. The CPU notes that U112 pin 5 has toggled so it processes the interrupt caused by U160 pin 17.

To clear the latch, the CPU again asserts TMRSTATCS, places a logic 0 on data line D1, and asserts the write control line, WR. U129 couples D1 to U112 pin 1, which forces pin 6 to 1 and pin 5 to 0 .

This circuit operates in the same manner for the counter \#0 interrupt.

CIRCUIT DESCRIPTION

E-Clock

The E-clock logic retimes the S-100 clock and control signals to the values required by the video board and I/O circuits. The timing diagram in Pictorial 2-13 and the following section explains how this is done.

U224 pin 3 forms the STVAL*SYNC signal during bus cycle 2. This provides a status valid signal to the video board. U224 pin 10 generates $\overline{1 O}$, a chip-select line to the I/O port decoder and to the video board. The combination of $\overline{\bar{O}}$ and STVAL*SYNC form CSEN at U238 pin 9. This line provides a chip-enable signal to serial ports A and B.

At the end of the read or write pulse from U224, pin 1, the logic 1 at pin 8 of U238 is latched into pin 9 of U233. This presets U238 pin 9, and brings CSEN back to logic 1 during BS3. At the same time, U238 pin 8 goes low to clear U233 pin 9.

During this time, the inverted system clock, $\bar{\Phi}$, works with U238 pin 8 and $\overline{\text { WR*DBIN }}$ to form the ECLK signal. This signal provides timing to the parallel port.

Pictorial 2-13

CIRCUIT DESCRIPTION

I/O Circuitry

Serial Ports A and B

General

The two serial ports permit the Computer to communicate with external devices such as printers, MODEMs, plotters, and voice synthesizers. This frees the S-100 slots on the main board for other purposes.

The serial ports are designed around the 2661-2 EPCI (Enhanced Programmable Communications Interface). These ICs have a large number of features, including:

- Polled or interrupt mode operation.
- Asynchronous or synchronous operation.
- 5- to 8 -bit characters plus parity.
- Odd, even, or no parity.
- Baud rates from 45.5 baud to 38,400 baud.
- Full handshaking.
(See the 2661-2 data sheet in Appendix D for complete specifications.)

Serial Port A

Serial port A consists of U243 and its surrounding circuitry. This port is a DCE port and can be used to connect to a line printer such as the Z-125AA.

To select this port, the CPU addresses the following ports:
0E8H Receiver holding register (read).
Transmitter holding register (write).
0E9H Status registers (read).
SYN1/SYN2/DLE registers (write).
0EAH Mode registers (read/write).
0EBH Command registers (read/write).

CIRCUIT DESCRIPTION

When it selects one of these ports, it asserts EPCIACS from the I/O port decoder and CSEN from the E-clock logic. These lines connect to pins 1 and 2 of U174 and assert the chip-enable line (pin 11) of U243.

Also, the CPU asserts pins 12 and 10 to select the right internal register. The OUT signal at U243 pin 13 determines whether the selected register is written to or read from. This signal is derived from the sOUT signal at U214, pin 14.

The CPU transmits and receives data at lines D0 through ${ }_{i}$ D7 on U243. If the CPU is transmitting data, it chip-enables U243, selects the correct register, raises pin 13 of U243 to logic 1, places the data to be transmitted on the inputs of U244, and asserts sWO* at pins 1 and 19 of U244.

The data is loaded into the transmit data holding register inside the EPCI. The EPCI then asserts TxRDY at its pin 15 to raise the EPCIANT line at pin 8 of U222, interrupting the CPU. The CPU responds by not sending any more data until the transmitting holding register is empty.

The EPCI serially transmits the contents of the transmit data holding register out pin 19 and through U245, which converts the TTL to RS-232 levels. In asynchronous mode, the EPCI first sends a start bit; followed by the programmed number of data bits (5 to 8 , LSB first), the parity bit (if programmed to send a parity bit), and finally, the programmed number of stop bits, either $1,11 / 2$, or 2.

Once the transmit data holding register is empty, the $\overline{\text { TxRDY }}$ line goes low to inform the CPU that it can send another byte.

CIRCUIT DESCRIPTION

In the receive mode, serial data enters the EPCI at pin 3 through U247D, which converts the + or - 12-volt RS-232 levels to TTL levels. The EPCI extracts the data bits and loads it into the receive data holding register. The $\overline{\mathrm{RxRDY}}$ line then goes low to interrupt the CPU through U222, pin 10. When the CPU processes the interrupt, it addresses U243, places a logic 0 on pin 13, and reads the data at D0-D7 through U241. U241 is selected by asserting the BIOSEL line (from the I/O port decoder) and DBIN at pins 1 and 2 of U222.

The handshake lines are standard EIA RS-232 control lines. These lines are clear to send (CTS), data set ready (DSR), request to send (RTS), and data terminal ready (DTR). To maintain RS-232 standards, they are swapped with their comp!ementary lines at the DCE connector.

Jumpers J109 and J111 allow connecting the DCE RTS line to either $\overline{\mathrm{CTS}}$ or to $\overline{\mathrm{DCD}}$ on the EPCI. If they are connected to the clear to send line, pin 17, the RTS line controls the transmitter. If they are connected to the data carrier detect line at pin 16, RTS controls the receiver.

Depending upon the peripheral, these lines may or may not be used. See the technical manual of the peripheral for that information.

Crystal-controlled oscillator U240 provides a $4.9152-\mathrm{MHz}$ clock to U243 pin 20. The EPCI uses this clock to generate the baud rate frequencies.

Pins 9 and 25 of U243 provide clock to the peripheral device, if it requires it. This timing can be either 1 or 16 times the baud rate. Pins 9 and 25 are connected together since $\overline{T \times C}$ is 3 -stated during receive and $\overline{\mathrm{RxC}}$ is 3 -stated during transmit.

Serial Port B

Serial port B consists of U242 and its surrounding circuitry. This port is a DTE port and can be used to connect to devices such as a MODEM or to another computer.

To select this IC, the CPU addresses the following ports:
0ECH Receiver holding register (read).
Transmitter holding register (write).
OEDH Status registers (read).
SYN1/SYN2/DLE registers (write).
OEEH Mode registers (read/write).
0EFH Command registers (read/write).
The differences between this port and serial port A are minor. To chip-select this IC, the CPU asserts EPCIBCS instead of EPCIACS, the EPCI interrupts the Computer through EPCIBINT instead of EPCIAINT, and pins 9 and 25 of this port are clock inputs instead of outputs. This last feature is taken care of when the CPU initially programs the EPCI. The frequency can be 1, 16, or 64 times the serial baud rate.

In the asynchronous mode, pins 9 and 25 act as outputs. Under these conditions, D103 and D104 isolate these pins from U247A and U247B.

CIRCUIT DESCRIPTION

Parallel Port

General

The paralie! port is designed around a 68A21 peripheral interface adapter (PIA) at U114. This IC performs three functions: (1) it operates as a printer port; (2) it serves as a port for a light pen; and (3) it couples the video board vertical retrace signal to the CPU.

The CPU accesses U114 for programming or data transfer through U135 and U136. At the same time, it chip-selects U114 by asserting the $\overline{6821 \mathrm{CS}}$ control line from the I/O port decoder. The CPU also asserts address lines BAO and BA1 (pins 36 and 35) to select the correct internal register.

The enable line, E-CLK, comes from the E-clock logic circuits described previously and provides timing to U114. All other signals to the PIA are referenced to either the rising or falling edges of this line.

The CPU asserts the OUT line on pin 21 of U114 when the computer needs to write to the PIA. In all other cases, the PIA is in the read mode when enabled. Actual data transfer between the CPU and PIA takes place when the CPU asserts $\overline{W O}$ at U136 pin 1 for a write, or DBIN at U175 pin 10 for a read. The other connections to U114 are covered in following sections. (For a complete description of the internal operation of the PIA, see the data sheets in Appendix C.)

CIRCUIT DESCRIPTION

Printer Port

The printer port is a parallel output port with handshaking capabilities. It allows you to connect the Computer to some of the more popular printers without having to pay extra for a serial interface.

The parallel data leaves U114 at PA0, PA1, and PB2 through PB7 and couples through U115 to J3 where it becomes PDATA1 through PDATA8. J3 couples this data to the printer. When this data is sent, the data is validated by PA2 and the STROBE line goes low to inform the printer that a new byte is present at its input.

The ACKNLG line asserts when the printer has processed the received byte and is ready to receive another character. This signal is inverted by U134A and sent to CB1 on pin 18 of U114. This input can be programmed to detect either a negative-going or positive-going signal, allowing ACKNLG to assert on logic 1 or a logic 0 . Some printers handshake when busy.

CB1 detects the voltage transition and asserts the printer interrupt line at U114, pin 37. When the Computer processes the interrupt, it addresses U114's control register to determine which circuit caused the interrupt. When the CPU detects that the printer caused the interrupt, it transmits the next byte to the printer.

The BUSY line asserts if the printer cannot accept a data byte at the time STROBE occurs. This can happen if the print head is moving (such as during a carriage return), if the printer is in the off-line mode, or if an error occurred, such as when the printer runs out of paper.

The BUSY signal is buffered by U116B and couples to CB2 and PAO on U114. Input CB2 operates in the same manner as CB1 in the ACKNLG circuits. The CPU responds to the interrupt, finds that a printer BUSY signal has occurred, and stops printing until the BUSY line goes to its inactive state.

CIRCUIT DESCRIPTION

To see when the BUSY line goes to the inactive state, it monitors the logic level of PAO. This simplifies programming since, otherwise, CB2 must be programmed to respond to the oppo-site-polarity signal transition.

The CPU uses the $\overline{\mathrm{N} I T}$ line to initialize some printers. It does this by sending a short pulse (typically 50 ns) to the printer.

The $\overline{\operatorname{ERROR}}$ line asserts if a printer failure occurs, such as when the ribbon needs changing, or when the printer runs out of paper. The CPU stops sending characters until the error is fixed.

Light Pen Port

The light pen circuits consist of U134D, U134B, U134C, U116E, U131, and part of the PIA at U114.

The CPU cannot respond to a signal from the light pen circuits without a user-supplied program to set up interrupts, handle timing, and take care of bit locations detected by the light pen. As a result, this discussion can only be general.

When the CPU lights a dot on the CRT within the range of the light pen, the light pen sends a pulse to U134 pin 5. Jumper J103 allows triggering from either the leading or trailing edge of this pulse. The jumper should be set so that the leading edge always triggers flip-flop U131.

This pulse latches a logic 1 into U131 pin 5, which couples through U116E to the light pen strobe input in the CRT Controller, or CRTC (U330), on the video board. The CRTC saves the address of the byte being accessed. (See the "Theory of Operation" on Page 4.64 in the "Video Board" part of this Manual for more details.)

The output of U131 also couples to pin 40 of U114, a 68A21 peripheral interface adapter. The rising edge of the signal at

CIRCUIT DESCRIPTION

pin 40 causes $\overline{\mathrm{IRQA}}$ at pin 38 of U114 to go low if unmasked by software. $\overline{\mathrm{RQA}}$ is then inverted by pin 13 of U134 to cause a display interrupt at the CPU.

When the CPU acknowledges the interrupt, it must assert the 6821 CS line (from the I/O decoder port) at U175 pin 4. Line 6821 CS also chip-selects U114 at pin 23, while BA0/BA1 addresses the PIA control register to see if the light pen circuits generated the interrupt. The $\overline{\text { OUT }}$ line at pin 21 and the DBIN line at U175 pin 10 go to logic 1 to transfer the PIA data to the CPU.

If the interrupt was caused by light pen activity, the CPU processes it according to its program. Before finishing, the CPU clears pin 5 of U 131 by pulsing a logic 0 to pin 1 of U 131 .

U134B, the light pen switch inverter, allows the CPU to monitor the status of a SPST switch connected to LTPNSW at J4. It does this by continually polling PA6 at U114 pin 8 . This allows the Computer operator to do such things as move a dot around the CRT face with the light pen. As before, the Computer must be programmed to use this feature.

Video Interrupt Port

The video interrupt port consists of U116G, U131, and U114. The signal at pin 16 of U116, VIDINT, is the vertical sync pulse, VSYNC1D, buffered through pin 9 of U366 on the video board. The CPU times itself from this pulse so that it can update the display during vertical retrace, thus preventing interference on the display. See the "Video Board" circuit description for more details.

When a vertical sync pulse occurs, the positive-going edge from pin 5 of U116 latches a logic 1 into pin 9 of U131. This couples to U114 pin 39, and causes the PIA to generate a display interrupt at U114 pin 38.

When the CPU responds, it checks the PIA control register to determine which line caused the interrupt. Once it finds that VIDINT caused it, the CPU clears U131 by pulsing U114 pin 7 low, and then updates the display circuits as necessary.

CIRCUIT DESCRIPTION

I/O Port Decoder

The heart of the I/O port decoder is U179, a 256×4 bit PROM. Depending on which main board port the CPU addresses, U179 enables U159 or U157, respectively a 3-to-8 line decoder and a dual 2-to-4 line decoder.

To address one of these ports (0EOH through OFFH), the CPU first places the appropriate port address on the inputs of U179, A0 through A7. This address comes from the S-100 address lines, A0-A7, through octal buffer U181.

When the address lines have stabilized, the CPU enables U179 by asserting pin 13, the $\overline{10}$ line. This signal comes from U224C pin 10 and goes low whenever the CPU asserts the S-100 sINP or sOUT lines. Once $\overline{1 O}$ is asserted, U179 decodes the address at its inputs and selects either U159 or U157.

For example, it selects U159 for a memory control latch operation by bringing U179 pin 12 to logic 0 . U159 then decodes the lower three bits of the address bus coming in at pins 1 , 2, and 3 to assert pin 11, which carries the MEMCTRLCS signal.

U159 also selects the following ports:
TMRSTATCS. This is the timer status port at U160.
HI-ADCS. This line controls the extended addressing latches.

SWAPCS. This line connects to the processor swap port.
$\overline{\text { DWSEL. This line controls the power-up reset configura- }}$ tion port at U239.

CIRCUIT DESCRIPTION

If U179 pin 11 is asserted, section A of decoder U157 is selected. It decodes address lines BA1 and BA2 to enable the interrupt ports, $\overline{8259 A C S S}$ and 8259ACSM, or the keyboard port, KEYBDSEL.

If U 179 pin 10 is asserted, section B of decoder U 157 is selected. It decodes address lines BA2 and BA3 to enable one of the following ports:

6821ACSS. The parallel port, U114.
8253CS. The timer port, U160.
EPCIACS. Serial port A.
EPCIBCS. Serial port B.
If the keyboard, serial port A, or serial port B is selected, pin 9 of U179 also goes low. This line is further decoded by U222 to enable U241 whenever the CPU reads data from one of these ports.

Page 2.92

REPLACEMENT PARTS LIST

| CIRCUIT | HEATH |
| :--- | :--- | :--- |
| Comp. No. Part No. | |

Resistors

All resistors are $1 / 4 \mathrm{~W}, 5 \%$, unless marked otherwise.

R101-R103	$6-472-12$	4700Ω
R104	$6-102-12$	1000Ω
R105	$6-6651-12$	$7150 \Omega, 1 \%$
R106	$6-6811-12$	$6810 \Omega, 1 \%$
R107-R108	$6-103-12$	$10 \mathrm{k} \Omega$
R109-R111	$6-102-12$	1000Ω
R112	$6-471-12$	470Ω
R113-R114	$6-103-12$	$10 \mathrm{k} \Omega$
R115	$6-472-12$	4700Ω
R116	$6-154-12$	$150 \mathrm{k} \Omega$
R117	Jumper wire installed here. No resistor	
R118-R119	$6-474-12$	$470 \mathrm{k} \Omega$
R120	$6-224-12$	$220 \mathrm{k} \Omega$
R121	$6-102-12$	1000Ω
R122	$6-220-12$	22Ω
R123-R124	$6-511-12$	510Ω
R125-R126	$6-103-12$	$10 \mathrm{k} \Omega$
R127	$6-102-12$	1000Ω
R128	$6-472-12$	4700Ω
RP101	NOT USED	
RP102	$9-131$	390Ω, resistor pack
RP103-RP104	$9-124$	4700Ω, resistor pack
RP105	NOT USED	
RP106	$9-124$	4700Ω, resistor pack
RP107-RP109	$9-124$	4700Ω, resistor pack
RP110-RP112	$9-132$	330Ω, resistor pack
RP113-RP114	$9-124$	4700Ω, resistor pack
RP115	$9-132$	330Ω, resistor pack
RP116	$9-130$	$300 / 390 \Omega$, resistor pack
RP117	$9-133$	4700Ω, resistor pack
RP118	$9-124$	4700Ω, resistor pack
RP119	$9-106$	$10 \mathrm{k} \Omega$, resistor pack
RP120	$9-128$	$10 \mathrm{k} \Omega$, resistor pack
RP121-RP122	$9-106$	$10 \mathrm{k} \Omega$, resistor pack
RP123-RP125	$9-133$	4700Ω, resistor pack
RP126-RP127	$9-106$	$10 \mathrm{k} \Omega$, resistor pack
RP128	$9-128$	$10 \mathrm{k} \Omega$, resistor pack
RP129-RP130	$9-124$	4700Ω, resistor pack

CIRCUIT	HEATH	
Comp. No.	Part No.	

Capacitors

All capacitors are 20%, unless marked otherwise.

C101-C113	21-762	. $1 \mu \mathrm{~F}$ ceramic
C113-1	25-918	$100 \mu \mathrm{~F}$ electrolytic
C114,C115	21-762	. $1 \mu \mathrm{~F}$ ceramic
C116-C118	21-773	470 pF ceramic
C119	21-762	. $1 \mu \mathrm{~F}$ ceramic
C120	21-773	470 pF ceramic
C121-C133	21-762	. $1 \mu \mathrm{~F}$ ceramic
C134-C138	21-773	470 pF ceramic
C139-C163	21-762	. $1 \mu \mathrm{~F}$ ceramic
C164	29-44	. $001 \mu \mathrm{~F}$ polystyrene
C165-C173	21-762	. $1 \mu \mathrm{~F}$ ceramic
C174	25-924	$2.2 \mu \mathrm{~F}$ electrolytic
C174-1	25-918	$100 \mu \mathrm{~F}$ electrolytic
C175-C177	21-762	. $1 \mu \mathrm{~F}$ ceramic
C178-C179	NOT USED	
C180	25-820	$10 \mu \mathrm{~F}$ electrolytic
C181-C185	21-762	. $1 \mu \mathrm{~F}$ ceramic
C186	21-718	20 pF ceramic
C187-C188	21-762	. $1 \mu \mathrm{~F}$ ceramic
C189	25-918	$100 \mu \mathrm{~F}$ electrolytic
C190-C197	21-762	. $1 \mu \mathrm{~F}$ ceramic
C198-C199	25-859	. $47 \mu \mathrm{~F}$ electrolytic
C200-C202	21-762	. $1 \mu \mathrm{~F}$ ceramic
C204-C207	21-762	. 1μ F ceramic
C208	25-924	$2.2 \mu \mathrm{~F}$ electrolytic
C209	21-762	. $1 \mu \mathrm{~F}$ ceramic
C210	29-44	. $001 \mu \mathrm{~F}$ polystyrene
C211-C212	21-762	. $1 \mu \mathrm{~F}$ ceramic
C213	25-820	$10 \mu \mathrm{~F}$ electrolytic
C214-C221	21-762	. $1 \mu \mathrm{~F}$ ceramic
C222-C226	21-763	330 pF ceramic

REPLACEMENT PARTS LIST

CIRCUIT	HEATH	Description
Comp. No.		

Inductors

L101-L104 235-229
$35 \mu \mathrm{H}$

Transducers

X101 \quad 473-29 \quad Audio Transducer

Crystals

Y101	$404-645$	10 MHz
Y 102	$404-647$	6 MHz
Y 103	$404-644$	15 MHz
U 191	$150-132$	4 MHz
U240	$150-133$	4.9152 MHz

Semiconductors

See "Semiconductor Identification" Page 2.95.

SEMICONDUCTOR IDENTIFICATION

This section is divided into four parts. The "Component Number Index" relates circuit component numbers to Heath part numbers. The "Part Number Index" relates part numbers to manufacturers' part numbers, as well as providing lead configuration drawings for each part. The remaining two parts are "PAL Equations" and "ROM Codes" for the PALs and ROMs on the main circuit board.

Component Number Index

CIRCUIT	HEATH
COMPONENT	PART
NUMBER	NUMBER
D101	
D102-D104	$57-607$
C203	$56-56$
U110	$56-89$
U111	$444-126$
U112	$444-104$
U113	$443-1051$
U114	$443-875$
U115-U116	$443-1014$
U117-U125	$443-791$
U126	$443-970$
U127	$443-791$
U128	$443-973$
U129	$443-1037$
U130	$443-811$
U131	$443-1049$
U132-U133	$443-1051$
U134	$443-837$
U135-U136	$443-872$
U137-U145	$443-791$
U146	$443-970$
U147	$443-1037$
U148	$442-53$
U149	$443-948$
U150	$41-10$
U151	$443-900$
U152	$443-864$
U153	$443-948$
U154	$443-1001$
U155	$443-1038$
U156	$443-728$
U157	$443-875$
U158	$443-822$
U159	$443-1034$
U160	$443-877$
U169	

SEMICONDUCTOR IDENTIFICATION

SEMICONDUCTOR IDENTIFICATION

CIRCUIT COMPONENT NUMBER	HEATH PART NUMBER
U217	443-791
U218	443-1112
U219	443-900
U220	443-755
U221	443-875
U222	443-728
U223	443-791
U224	443-1048
U225	443-1049
U226	444-105
U227	443-837
U228	442-644
U229	442-646
U230	443-795
U231	443-74
U232	442-53
U233-U234	443-1051
U235	443-1047
U236	443-1011
U237	443-811
U238	443-1051
U239	443-791
U240	150-133
U241	443-791
U242-U243	443-1061
U244	443-791
U245	443-794
U246-U247	443-795
U248	443-794

SEMICONDUCTOR IDENTIFICATION

Part Number Index

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAYBE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-72	7417	Open Collector Hex Buffers	
443-74	75452	Peripheral Drivers	
443-728	74LS00	Quad 2-input NAND	
443-752	74LS175	Quad ${ }^{\text {flip-flop }}$	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

| HEATH
 PART
 NUMBER |
| :---: | | MAYBE |
| :---: |
| REPLACED |
| WITH | (DESCRIPTION

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-791	74LS244	3-state buffer/driver	
443-794	75188	TTL-RS232 driver	
443-795	75189	RS232-TTL receiver	
443-797	74LS10	Triple 3-input NAND	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-805	74LS273	Octal2-inputD flip-flop	
443-811	74LS125	Quad 3-state buffer	
443-822	74LS139	Dual 2 to 4 decoder	
443-837	74LS373	3-state 8-bit latch	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-857	74LS367	Hex 3-state buffer	
443-864	74LS11	Triple 3-input AND	
443-872	74LS14	Schmitt Trigger Hex inverter	
443-875	74LS32	Quad 2-input OR	

(cont'd)

Page 2.104

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-877	74LS138	Decoder	
443-879	74LS174	HexD flip-flop	
443-891	74LS86	Quad 2-input XOR	
443-900	$74 \mathrm{S74}$	Dual D flip-flop	

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-948	74LS112	Dual J-K flip-flop	
443-970	MCM6665	$64 \mathrm{~K} \times 1$ RAM	
443-973	74LS393	Binary counter	
443-976	74508	Quad 2-input AND	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1001	74LS280	Odd/even parity check	
443-1009	8088	Microprocessor	
443-1010	8085A-2	Microprocessor	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

$\begin{aligned} & \text { HEATH } \\ & \text { PART } \end{aligned}$ NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1011	8284	Clock Generator/driver	
443-1012	8259A	Programmable Interrupt controller	
443-1014	68A21	PIA	
443-1024	74LS368	Hex 3-state inverter	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1034	74LS38	Quad NAND buffer	
443-1036	74LS156	Dual 2 to 4 decoder	
443-1037	74LS257A	Quad 2101 selector	
443-1038	74S260	Dual 5-input NOR	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1045	74ALS02	Quad 2-imput NOR	
443-1047	74ALS10	Triple 3-input NAND	
443-1048	74ALS28	Quad NOR buffer	
443-1049	74ALS37	Quad 2-input NAND buffer	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1051	74ALS74	Dual D flip-filop	
443-1054	74LS169	4-bit U/D counter	
443-1061	2661-2	EPC 1	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1066	8253-5	Programmable interval timer	
443-1081	74ALS1020	Dual 4-input NAND buffer	
443-1112	9602	Multivibrator	
444-87-2	Available only from Zenith Data Systems or Heath Company	8K Monitor ROM	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	may be REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
444-87-5	Available only from Zenith Data Systems or Heath Company	16K Monitor ROM	
444-101	Available only from Zenith Data Systems or Heath Company	System l/O Decoder ROM	
444-104	Available only from Zenith Data Systems or Heath Company	Memory Decoder ROM	
444-105	Available only from Zenith Data Systems or Heath Company	System status decoder ROM	
444-126	Available only from Zenith Data Systems or Heath Company	HAL or PAL16L8 Memory timing control	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Part Number Index (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
444-128	Available only from Zenith Data Systems or Heath Company	HAL or PAL12H6 Processor swap control	
444-129-1	Available only from Zenith Data Systems or Heath Company	HAL or PAL16L2 ROM address decoder	
444-130	Available only from Zenith Data Systems or Heath Company	HAL or PAL14L4 Memory high address decoder	
444-109	8041A	Keyboard processor	
444-141	8741A		

SEMICONDUCTOR IDENTIFICATION

Pal Equations

444-126/RAM Controller

LOGIC EQUATIONS

$\overline{\text { RASO }}$	$=$ REN0*TAP1 + RENO*STC ${ }^{*} \overline{\text { RREQ }}+\overline{\text { BCYC }}{ }^{*}$ TAP 1
RAS1	$=$ REN1*TAP1 + REN1*STC** $\overline{\text { RREQ }}+\overline{\text { BCYC }} *$ 'TAP 1
RAS2	$=$ REN2*TAP1 + REN2*STC* $\overline{\text { RREQ }}+\overline{\text { BCYC }}$ *TAP 1
CAS-A	$=$ BCYC * TAP2 ${ }^{*} \overline{W O}+\overline{\text { BCYCTAP2*}} \overline{\text { PHANTOM }}$
CAS-B	$=$ BCYC*TAP2** WO + BCYC*TAP2* $\overline{\text { PHANTOM }}$
CAS-C	
WE	$=$ BCYC*WO*TAP2 $^{+}$+ BCYC*WO*TAP1
MDGATE	$=\overline{\text { TAP1 }}+\overline{\text { BCYC }}$

SEMICONDUCTOR IDENTIFICATION

444-128/Hold of Dual Processors

LOGIC EQUATIONS


```
    85HLDA*
pHLDA = INOU3*85HLDA*88HLDA
88SEL = 85HLDA*}\overline{88HLDA}+85HLDA*88HLDA*8SEL
OUT3 = INOU3*85HLDA*88HLDA + INOU2
OUT2 = 彷HLDA}*88HLDA*\overline{8SEL}+\mp@subsup{H}{}{*
85HOLD = INOU3*HOLD*85HLDA*88HLDA*\overline{8SEL}}+\mp@subsup{H}{}{*}HOLD*\overline{85HLDA
        *88HLDA*
```


SEMICONDUCTOR IDENTIFICATION

444-129-1/Top 32K Selector

LOGIC EQUATION

$+\mathrm{MEMR}^{*} \overline{\mathrm{ROMO}^{*}}{ }^{\star} \mathrm{ROM1}^{*} \mathrm{~A} 15^{*} \mathrm{~A} 16^{*} \mathrm{~A} 17^{*} \mathrm{~A} 18^{*} \mathrm{~A} 19^{*} \overline{\mathrm{~A} 20}{ }^{\star} \overline{\mathrm{A} 21}{ }^{*} \overline{\mathrm{~A} 22^{*}}{ }^{\star} \overline{\mathrm{A} 23}$

SEMICONDUCTOR IDENTIFICATION

444-130/High Address Decoder

LOGIC EQUATIONS

DECODEN	$=\overline{\mathrm{BA} 18}{ }^{*} \overline{\mathrm{BA} 19} * \overline{\mathrm{BA} 20} * \overline{\mathrm{BA} 21} * \overline{\mathrm{BA} 22} * \overline{\text { BA23 }}$
DIEN	$=$ DBIN*MDENB* ${ }^{*}$ PHANTOM
$\overline{\text { CLRRR }}$	$=\overline{\text { TAP1 }}{ }^{\text {TAPP2 }}{ }^{*} \overline{\text { BCYC }}$
$\overline{\text { CLRMR }}$	$=$ TAP1 * TAP2*BCYC

SEMICONDUCTOR IDENTIFICATION

ROM Codes


```
IODEC I/O decoder for the Z-100
```

0023'	OF	db	Of
0024'	OF	db	Of
0025'	OF	db	of
0026'	OF	db	Of
$0027{ }^{\prime}$	OF	db	Of
0028 ${ }^{\prime}$	OF	db	Of
0029 ${ }^{\prime}$	OF	db	Of
002A'	OF	db	Of
002B'	OF	db	Of
002C'	OF	db	Of
002D'	OF	db	Of
002E'	OF	db	Of
002F'	OF	db	Of
0030^{\prime}	OF	db	Of
0031'	OF	db	Of
0032'	OF	db	Of
0033'	OF	db	Of
0034^{\prime}	OF	db	Of
0035'	OF	db	Of
0036'	OF	db	Of
$0037{ }^{\prime}$	OF	db	Of
0038'	OF	db	0 f
0039'	OF	db	Of
003A'	OF	db	Of
003B'	OF	db	Of
003C'	OF	db	Of
003D'	OF	db	Of
003E'	OF	db	Of
003F ${ }^{\prime}$	OF	db	of
0040'	OF	db	Of
0041^{\prime}	OF	db	Of
0042'	OF	db	Of
0043'	OF	db	Of
0044'	OF	db	Of
0045 ${ }^{\prime}$	OF	db	Of
0046'	OF	db	Of
0047'	OF	db	Of
0048'	OF	db	Of
0049'	OF	db	Of
004 ${ }^{\text {, }}$	OF	db	Of
004B'	OF	db	Of
004C'	OF	db	Of
004D.'	OF	db	Of
004E'	OF	db	Of
004F'	OF	db	Of
0050'	OF	db	0 f

SEMICONDUCTOR IDENTIFICATION

IODEC I/O decoder for the $\mathrm{Z}-100$

$0051{ }^{\prime}$	OF	db	Of
0052'	OF	db	Of
0053'	OF	db	Of
0054^{\prime}	OF	db	Of
0055'	OF	db	Of
0056'	OF	db	Of
0057'	OF	db	Of
0058'	OF	db	Of
0059'	OF	db	Of
005A.	OF	db	Df
005B'	OF	db	Of
005C'	OF	db	Of
005D '	OF	db	Of
005E'	OF	db	Of
005F'	OF	db	Of
0060'	OF	db	Of
$0061{ }^{\prime}$	OF	db	Of
0062^{\prime}	OF	db	Of
0063'	OF	db	or
0064^{\prime}	OF	db	or
0065'	OF	db	Of
0066 ${ }^{\prime}$	OF	db	Of
0067'	OF	db	Of
0068 ${ }^{\prime}$	OF	db	Of
$0069{ }^{\prime}$	OF	db	Of
006A'	OF	db	Of
006B'	OF	db	Of
006C'	OF	db	Or
006D '	OF	db	Of
006E'	OF	db	Of
006F'	OF	db	Of
0070'	OF	db	Of
$0071{ }^{\prime}$	OF	db	Of
0072'	OF	db	Of
0073'	OF	db	Of
0074^{\prime}	OF	db	Of
0075'	OF	db	Of
0076 ${ }^{\prime}$	OF	db	Of
$0077{ }^{\prime}$	OF	db	0 f
$0078^{\text {' }}$	OF	db	Of
0079 ${ }^{\prime}$	OF	db	Of
007A ${ }^{\prime}$	OF	db	0 f
007B'	OF	db	Of
007C'	OF	db	0 f
007D'	OF	db	Of
007E'	OF	db	Of

SEMICONDUCTOR IDENTIFICATION

IODEC I/O decoder for the $\mathrm{Z}-100$

007F'	OF	db	Of	
0080'	OF	db	Of	
0081'	OF	db	Of	
0082 ${ }^{\prime}$	OF	db	Of	
0083'	OF	db	0 f	
0084^{\prime}	OF	db	Of	
0085'	OF	db	Of	
0086'	OF	db	Of	
0087 ${ }^{\prime}$	OF	db	Of	
0088 ${ }^{\prime}$	OF	db	Of	
0089 ${ }^{\prime}$	OF	db	Of	
008A ${ }^{\prime}$	OF	db	Of	
008B'	OF	db	0 f	
008C'	OF	db	Of	
008D'	OF	db	Of	
008E'	OF	db	Of	
008F'	OF	db	Of	
0090^{\prime}	OF	db	Of	
0091'	OF	db	Of	
0092 '	OF	db	Of	
0093'	OF	db	Of	
$009{ }^{\prime}$	OF	db	Of	
$0095{ }^{\prime}$	OF	db	Of	
0096'	OF	db	Of	
$0097{ }^{\prime}$	OF	db	Of	
0098'	OF	db	Of	
0099'	OF	db	or	
009A'	OF	db	Of	
009 ${ }^{\prime}$	OF	db	Of	
009C'	OF	db	Of	
009D'	OF	db	Of	
O09E'	OF	db	Of	
009F'	OF	db	Of	
OOAO'	OF	db	Of	
OOA 1^{\prime}	OF	db	Of	
OOA2'	OF	db	Of	
00A3'	OF	db	Of	
00A ${ }^{\prime}$	OF	db	Of	
O0A5'	OF	db	Of	
00A6'	OF	db	Of	
00A7'	OF	db	Of	
00A8'	OF	db	Of	; Reserved for $\mathrm{Z}-217$
00A9'	OF	db	Of	;Reserved for $2-217$
O0AA'	OF	db	Of	;Reserved for Z-217
00AB'	OF	db	Of	;Reserved for 2-217
OOAC'	OF	db	Of	;Reserved for Z-217

IODEC I/O decoder for the Z-100

OOAD'	OF	db	Of	; Reserved for	Z-207
OOAE'	OF	db	Of	;Reserved for	Z-207
00AF'	OF	db	Of	;Reserved for	Z-207
OOBO'	OF	db	Of	;Primary	Z-207
OOB1'	OF	db	Of	;Primary	Z-207
00B2'	OF	db	Of	;Primary	Z-207
00B3'	OF	db	Of	; Primary	Z-207
0084'	OF	db	Of	;Primary	Z-207
00B5'	OF	db	Of	;Primary	Z-207
00B6'	OF	db	Of	;Primary	Z-207
0087'	OF	db	Of	;Primary	Z-207
0088 ${ }^{\prime}$	OF	db	Of	;Secondary	Z-207
00B9'	OF	db	Of	;Secondary	Z-207
OOBA'	OF	db	Of	;Secondary	2-207
OOBB'	OF	db	Of	;Secondary	Z-207
OOBC'	OF	db	Of	;Secondary	Z-207
OOBD'	OF	db	Of	;Secondary	Z-207
OOBE'	OF	db	Of	;Secondary	Z-207
OOBF'	OF	db	Of	;Secondary	Z-207
00C0'	OF	db	Of	; Reserved	
00C1'	OF	db	Of	; Reserved	
00c2'	OF	db	Of	; Reserved	
00C3'	OF	db	Of	; Reserved	
00C4'	OF	db	Of	; Reserved	
00C5'	OF	db	Of	; Reserved	
00C6'	OF	db	Of	; Reserved	
0007'	OF	db	Of	; Reserved	
00C8'	OF	db	Of	; Reserved	
00C9'	OF	db	Of	; Reserved	
OOCA'	OF	db	Of	; Reserved	
OOCB'	OF	db	Of	; Reserved	
OOCC'	OF	db	Of	; Reserved	
OOCD'	OF	db	Of	; Reserved	
OOCE'	OF	db	Of	; Reserved	
OOCF'	OF	db	Of	; Reserved	
OODO'	OF	db	Of	; Reserved	
OOD1'	OF	db	Of	; Reserved	
00D2'	OF	db	Of	; Reserved	
00D3'	OF	db	Of	; Reserved	
OOD4'	OF	db	Of	Reserved	
0005'	OF	db	Of	Reserved	
OOD6'	OF	db	Of	Reserved	
00D7'	OF	db	of	; Reserved	
OOD8'	OF	db	Of	;Video 68a21	port
O0D9'	OF	db	Of	;Video 68a21	port
OODA'	OF	db	Of	;Video 68a21	port

SEMICONDUCTOR IDENTIFICATION

IODEC I/O decoder for the $Z-100$

OODB'	OF	db	Of	; Video	68 a 21	port
OODC'	OF	db	Of	; Video	68 a 45	CRTC
OODD'	OF	db	Of	; Video	68 a 45	CRTC
OODE'	OF	db	Of	; Video light pen counter		
OODF'	OF	db	Of	Reserved		

SEMICONDUCTOR IDENTIFICATION

IODEC I/O decoder for the $2-100$

OOEO'	OB	db	Ob	; 68a21 Pr	Printer port	
OOE1'	OB	db	Ob	;68a21 Pr	Printer port	
DOE2'	OB	db	Ob	;68a21 Pr	Printer port	
00E3'	OB	db	Ob	;68a21 Pr	Printer port	
00E4'	OB	db	Ob	; 8253 T	Timer port	
00E5'	OB	$d \mathrm{~b}$	0 b	; 8253 T	Timer port	
O0E6'	OB	db	0 b	; 8253 T	Timer port	
O0E7'	OB	db	Ob	; 8253 T	Timer port	
00E8'	03	db	03	;Serial	A Printer	DIO bus
O0E9'	03	db	03	;Serial	A Printer	DIO bus
O0EA'	03	db	03	;Serial	A Printer	DIO bus
OOEB'	03	db	03	;Serial	A Printer	DIO bus
OOEC'	03	db	03	;Serial	B Modem	DIO bus
OOED'	03	db	03	;Serial	B Modem	DTO bus
OOEE'	03	db	03	;Serial	B Modem	DIO bus
OOEF'	03	db	03	;Serial	B Modem	DIO bus
O0F0'	OD	db	0d	;8259a	Slave port	
00F1 ${ }^{1}$	OD	db	Od	;8259a	Slave port	
00F2'	OD	db	Od	;8259a M	Master port	
00F3'	OD	db	Od	;8259a M	Master port	
OOF4'	05	db	05	;8041a	Keyboard	DIO bus
00F5'	05	db	05	; 8041a	Keyboard	DIO bus
00F6'	OF	db	Of	Res	served	
00F7'	OF	db	Of	Res	served	
00F8'	OF	db	Of	Res	served	
00F9'	OF	db	Of	Res	served	
OOFA ${ }^{\prime}$	OF	db	Of	; Res	served	
OOFB'	OE	db	Oe	; 8253 T	Timer Status	
OOFC'	OE	db	De	; Memory	control	
OOFD'	OE	db	0 e	; High-Ad	ddress latch	
OOFE'	OE	db	0 e	;CPU S	Swap port	
OOFF'	06	db	06	;Dip Swi	itch port	DIO bus

SEMICONDUCTOR IDENTIFICATION

IODEC I/O decoder for the $Z-100$

Macros:
Symbols:

No Fatal error(s)

SEMICONDUCTOR IDENTIFICATION

0000^{\prime}	06	DB	06 H
0001^{\prime}	06	DB	06 H
0002^{\prime}	06	DB	06 H
0003^{\prime}	06	DB	06 H
0004^{\prime}	06	DB	06 H
0005^{\prime}	06	DB	06 H
0006^{\prime}	06	DB	06 H
0007^{\prime}	06	DB	$06 \mathrm{H}^{\prime}$
0008^{\prime}	06	DB	06 H
0009^{\prime}	06	DB	06 H
000 A $^{\prime}$	06	DB	06 H
000 B $^{\prime}$	06	DB	06 H

SEMICONDUCTOR IDENTIFICATION

000C'	06	DB	06H
O00D'	06	DB	06H
OOOE'	06	DB	06H
000F ${ }^{\prime}$	06	DB	06H
0010^{\prime}	05	DB	05H
0011^{\prime}	05	DB	05H
0012'	05	DB	05H
0013'	05	DB	05H
0014'	05	DB	05H
0015'	05	DB	05H
0016'	05	DB	05H
$0017{ }^{\prime}$	05	DB	05H
0018'	05	DB	05H
0019 ${ }^{\prime}$	05	DB	05H
001A'	05	DB	05H
001B'	05	DB	05H
001C'	05	DB	05H
001D'	05	DB	05H
001E'	05	DB	05H
001F'	05	DB	05H
0020'	03	DB	O3H
0021'	03	DB	03H
0022'	03	DB	03H
0023'	03	DB	03H
0024'	03	DB	03H
0025'	03	DB	03H
0026'	03	DB	03H
0027 '	03	DB	03H
0028 ${ }^{\prime}$	03	DB	03H
0029 ${ }^{\prime}$	03	DB	03H
002A'	03	DB	03H
002B'	03	DB	03H
002C'	03	DB	03H
002D'	03	DB	03H
002E'	03	DB	03H
002F'	03	DB	03H
0030'	OF	DB	OFH
$0031{ }^{\prime}$	OF	DB	OFH
0032'	OF	DB	OFH
0033'	OF	DB	OFH
$003{ }^{\prime}$	OF	DB	OFH
0035'	OF	DB	OFH
0036 ${ }^{\prime}$	OF	DB	OFH

SEMICONDUCTOR IDENTIFICATION

SEMICONDUCTOR IDENTIFICATION

$008{ }^{\prime}$	03	DB	03H
$0085{ }^{\prime}$	03	DB	03H
0086 ${ }^{\prime}$	03	DB	03H
0087'	03	DB	03H
0088'	03	DB	03H
0089 ${ }^{\prime}$	03	DB	03H
008A ${ }^{\text {' }}$	03	DB	03H
008B'	03	DB	03H
008C'	06	DB	06H
008D'	06	DB	06H
008E'	06	DB	06H
008F ${ }^{\prime}$	06	DB	06H
$0090{ }^{\prime}$	05	DB	05H
$0091{ }^{\prime}$	05	DB	05H
$0092{ }^{\prime}$	05	DB	05H
$0093{ }^{\prime}$	05	DB	05H
0094^{\prime}	05	DB	05H
$0095{ }^{\prime}$	05	DB	05H
0096'	05	DB	05H
$0097{ }^{\prime}$	05	DB	05H
0098'	05	DB	05H
0099'	05	DB	05H
009A'	05	DB	05H
009B'	05	DB	05H
009C'	05	DB	05H
009D'	05	DB	05H
009E'	05	DB	05H
009F'	05	DB	05H
OOAO'	06	DB	06H
OOA 1^{\prime}	06	DB	06H
00A2'	06	DB	06H
00A3'	06	DB	06H
00A ${ }^{\prime}$	06	DB	06H
00A5'	06	DB	06H
00A6'	06	DB	06H
OOA7'	06	DB	06H
00A ${ }^{\prime}$	06	DB	06H
00A9'	06	DB	06H
OOAA'	06	DB	06H
OOAB'	06	DB	06H
OOAC'	03	DB	03H
O0AD'	03	DB	03H
OOAE'	03	DB	03H
OOAF'	03	DB	03H

SEMICONDUCTOR IDENTIFICATION

OOBO ${ }^{\prime}$	OF	DB	OFH
00B1'	OF	DB	OFH
0082'	OF	DB	OFH
00B3'	OF	DB	OFH
0084'	OF	DB	OFH
00B5'	OF	DB	OFH
0086'	OF	DB	OFH
00B7'	OF	DB	OFH
00B8'	OF	DB	OFH
00B9 '	OF	DB	OFH
00BA'	OF	DB	OFH
00BB'	OF	DB	OFH
OOBC'	OF	DB	OFH
OOBD'	OF	DB	OFH
OOBE'	OF	DB	OFH
OOBF'	OF	DB	OFH

00C0'	06	DB	06H
00C1'	05	DB	05H
00C2'	05	DB	05H
00C3'	05	DB	05H
00C4'	05	DB	05H
00C5'	05	DB	05H
00C6 ${ }^{\prime}$	05	DB	05H
00C7'	05	DB	05H
00C8'	05	DB	05H
00C9'	05	DB	05H
OOCA'	05	DB	05H
OOCB'	05	DB	05H
OOCC'	05	DB	05H
OOCD'	05	DB	05H
OOCE'	05	DB	05H
00CF'	06	DB	06H
OODO'	05	DB	05H
OOD 1^{\prime}	06	DB	06H
OOD2'	06	DB	06H
OOD3'	06	DB	06H
OOD ${ }^{\prime}$	06	DB	06H

SEMICONDUCTOR IDENTIFICATION

0005 ${ }^{\prime}$	06	DB	06H
00D6'	06	DB	06H
00D7'	06	DB	06H
00D8'	06	DB	06H
00D9'	06	DB	06H
00DA'	06	DB	06H
OODB'	06	DB	06H
OODC'	06	DB	06H
6 pDD '!	06	DB	06H
OODE'	06	DB	06H
OODF ${ }^{\prime}$	05	DB	05H
O0EO'	03	DB	03H
OOE 1^{\prime}	03	DB	03H
O0E2'	03	DB	03H
OOE3'	03	DB	03H
OOE ${ }^{\prime \prime}$	03	DB	03H
O0E5'	03	DB	03H
OOE6'	03	DB	03H
O0E7 ${ }^{\prime}$	03	DB	03H
O0E8'	03	DB	03H
O0E9'	03	DB	03H
OOEA'	03	DB	03H
OOEB'	03	DB	03H
OOEC'	03	DB	03H
OOED'	03	DB	03H
OOEE'	03	DB	03H
OOEF'	03	DB	03H
00F0'	OF	DB	OFH
OOF $1^{\prime \prime}$	OF	DB	OFH
00F2'	OF	DB	OFH
00F3 ${ }^{\prime}$	OF	DB	OFH
00F4'	OF	DB	OFH
00F5'	OF	DB	OFH
00F6'	OF	DB	DFH
00F7'	OF	DB	OFH
00F8'	OF	DB	OFH
00F9 ${ }^{\prime}$	OF	DB	OFH
00FA'	OF	DB	OFH
00FB'	OF	DB	OFH
00FC'	OF	DB	OFH
00FD'	OF	DB	OFH
OOFE'	OF	DB	OFH
OOFF'	OF	DB	OFH

SEMICONDUCTOR IDENTIFICATION

SEMICONDUCTOR IDENTIFICATION

SEMICONDUCTOR IDENTIFICATION

CPU Status Decode Rom for the Z-100			ver. 2				
001C	03		db	00000011 b	;03h	88	sTNTA
001D	11		db	00010001b	; 11h	88	sINP
001E	20	30:	db	00100000b	; 20 h		sOUT
001F	05		db	00000101b	; 05h	88	sHLTA

CIRCUIT BOARD X-RAY VIEW

NOTE: To find the PART NUMBER of a component for the purpose of ordering a replacement part:
A. Find the circuit component number (R5, C3, etc.) on the X-Ray View.
B. Locate this same number in the "Circuit Component Number" column of the "Parts List."
C. Adjacent to the circuit component number, you will find the PART NUMBER and DESCRIPTION which must be supplied when you order a replacement part.

MAIN CIRCUIT BOARD
Component side shown in r
foil side shown in gray.

MAIN CIRCUIT BOARD

Component side shown in red, foil side shown in gray.

INTERCONNECT PIN DEFINITIONS

S-100 Bus Definitions

The definitions of the S-100 bus pins are given in the Appendix A portion of this documentation.

RS-232 Pin Definitions

The following chart gives the definitions of the RS-232 Serial Port pins.

RS-232C Interface Signals

Pin	Description
1	Protective ground
2	Transmitted data
3	Received data
4	Request to send
5	Clear to send
6	Data set ready
7	Signal ground (common return)
8	Received line signal detector
9	(Reserved for data set testing)
10	(Reserved for data set testing)
11	Unassigned
12	Secondary received line signal detector
13	Secondary clear to send
14	Secondary transmitted data
15	Transmission signal element timing (DCE source)
16	Secondary received data
17	Receiver signal element timing (DCE source)
18	Unassigned
19	Secondary request to send
20	Data terminal ready
21	Signal quality detector
22	Ring indicator
23	Data signal rate selector (DTE/DCE source)
24	Transmit signal element timing (DTE source)
25	Unassigned

INTERCONNECT PIN DEFINITIONS

Parallel Port Definitions

The chart below gives the definition of the parallel port.

Parallel Port Pinout

PIN	SIGNAL NAME	FUNCTION
1	STROBE	A pulse that clocks data.
2	PDATA1	Data to the peripheral.
3	PDATA2	Data to the peripheral.
4	PDATA3	Data to the peripheral.
5	PDATA4	Data to the peripheral.
6	PDATA5	Data to the peripheral.
7	PDATA6	Data to the peripheral.
8	PDATA7	Data to the peripheral.
9	PDATA8	Data to the peripheral.
10	ACKNLG	Acknowledge signal from the printer.
11	BUSY	Printer not ready for data when this signal is high.
12	GND	Ground.
15	ERROR	Error signal from the printer when this signal is low.
16	INIT	Pulse signal that initializes the printer.
17	GND	Ground.
18	GND	Ground.
19	GND	Ground.
20	GND	Ground.
21	GND	Ground.
22	GND	Ground.
23	GND	Ground.
24	GND	Ground.
25	GND	Ground.

INTERCONNECT PIN DEFINITIONS

Light Pen Definitions

The following chart gives the definition of the light pen port.

-PIN	SIGNAL NAME	
FUNCTION		
1	$+5 V$	
2	LTPNSW	
3	LTPEN	Monitors light pen switch
4	GND	Light pen "hit" signal
		Ground

Keyboard Connector Definitions

The following chart gives the definitions of the keyboard cable connectors.

Connector P105

PIN	SIGNAL NAME		FUNCTION
1	COL15		Column 15 line
2	CTRL		CONTROL line
3	COL8		Column 8 line
4	KBRST		Keyboard reset line
5	COL12		Column 12 line
6	COL14		Column 14 line
7	COL9		Column 9 line
8	COL13		Column 13 line
9	COL4	Column 4 line	
10	COL10	Column 10 line	
11	COL1	Column 1 line	
12	COL5	Column 5 line	
13	COL3	Column 3 line	
14	COL11	Column 11 line	
15	COL0	Column 0 line	
16	COL2	Column 2 line	
17	COL6	Column 6 line	
18	COL7	Column 7 line	
19	LED ANODE	LED anode line	
20	LED CATHODE	LED cathode line	

Connector P107

PIN	SIGNAL NAME	
	FUNCTION	
1	SHIFT ROW	Shift row line
2	CTRLRESET	Control (CTRL) and RESET line
3	ROW0	Row 0 line
4	ROW1	Row 1 line
5	ROW2	Row 2 line
6	ROW3	Row 3 line
7	ROW4	Row 4 line
8	ROW5	Row 5 line
9	ROW6	Row 6 line
10	ROW7	Row 7 line

INTERCONNECT PIN DEFINITIONS

Video Logic Board Connectors

The following charts give the definitions of the video logic circuit board connectors.

Connector P104

PIN	SIGNAL NAME	FUNCTION
1	+5VDC	+5 -volt supply line
2	+5VDC	+5 -volt supply line
3	+5VDC	+5 -volt supply line
4	+5VDC	+5 -volt supply line
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	BAO	
10	BA1	
11	BA1	
12	BA3	
13	BA4	
14	BA5	
15	BA6	
16	BA7	
17	BA8	
18	BA9	
19	BA10	
20	BA11	Buffered
21	BA12	Address Lines
22	BA13	
23	BA14	
24	BA15	
25	BA16	
26	BA17	
27	BA18	
28	BA19	
29	BA20	
30	BA21	
31	BA22	
32	BA23	

INTERCONNECT PIN DEFINITIONS

33	GND	Ground
34	GND	Ground
35	BD00	
36	BD01	Data output lines
37	BD02	
38	BD03	
39	GND	Ground
40	GND	Ground
41	GND	Ground
42	GND	Ground
43	BD04	
44	BD05	Data output lines
45	BD06	
46	BD07	
47	GND	Ground
48	GND	Ground
49	BDIO	
50	BDI1	
51	BDI2	
52	BDI3	Data input lines
53	BDI4	
54	BDI5	
55	BDI6	
56	BDI7	
57	RDBFRENBL	Read buffer enable
58	NC	No connection
59	GND	Ground
60	GND	Ground
61	CRTRAMSEL	CRT RAM select
62	VIDRAMRDY	Video RAM ready
63	LTPNSTB	Light pen strobe
64	POC*	Power-on clear
65	RESET2	Reset
66	ECLK	E clock
67	OUT	Output status signal
68	OUT	
69	MEMR	Status memory read

INTERCONNECT PIN DEFINITIONS

70	STVAL*SYNC	Status valid signal
71	BMWRT	Buffered memory write
72	$\overline{\text { WO }}$	Status write
73	$\overline{\text { WR }}$	Write strobe
74	$\overline{\bar{O}}$	Chip-select line
75	$\overline{\text { DBIN }}$	Data request control signal
76	VIDINT	Video Interrupt
77	GND	Ground
78	GND	Ground
79	GND	Ground
80	GND	Ground

INTERCONNECT PIN DEFINITIONS

Power Supply Connectors

The following charts give the definitions of the power supply connectors.

PIN	SIGNAL NAME		FUNCTION
1	GND	GND	Ground
2		Ground	
3		No connection	
4	+5	Plus 5-volt supply	
5	+5	Plus 5-volt supply	
6	+5	Plus 5-volt supply	
7	+5	Plus 5-volt supply	
8	GND	Ground	
9	GND	Ground	

Connector P102

PIN	SIGNAL NAME	FUNCTION
1	GND	Ground
2	+16	Plus 16-volt supply
3	GND	Ground
4	+8	Plus 8-volt supply
5	+8	Plus 8-volt supply
6	+8	Plus 8-volt supply
7		No connection
8	-16	Minus 16-volt supply
9	GND	Ground

Keyboard Encoder

Description 3.2
User Options and Programming 3.3
Theory of Operation 3.8
Troubleshooting 3.10
Keyboard Scan Matrix 3.11
Encoder Output Codes (hex) 3.12
Keyboard Key Layout 3.19

DESCRIPTION

The keyboard encoder (or processor) scans the keyboard matrix to determine if a key has been pushed down. After finding a "down" key, it then sends a corresponding key code to the system to indicate which key is down. This is its normal ASCll mode of operation.

When in its event-driven mode (an alternate "up/down" mode), it not only sends a "down code," but it also sends a different "up code" when the key is released. In this mode, the codes transmitted are arbitrary and do not directly relate to the key's ASCII character. However, the codes are unique for each key.

Other functions that the keyboard encoder provides are:

- Autorepeat on/off - 11 keys per second, when selected
- Fast repeat rate - 28 keys per second
- Key debounce - 5 milliseconds maximum
- Key click on/off
- Clear FIFO (First In First Out) buffer
- Beep sound (software produced, not produced by key closure)
- Keyboard enable/disable

The scanning method is as follows. The encoder sends a key code to the master processor when it finds a key that is down. It then continues to scan until it finds another key down, and outputs its code to the master processor also. Then the encoder stops scanning and interrogates these two keys until one of them is released; in which case, scanning resumes. This applies only to the ASCII mode of operation. In the eventdriven mode, the encoder never stops scanning.

USER OPTIONS AND PROGRAMMING

Power Configuration

After power-up or a hard reset, the keyboard encoder is initialized to the following state:

- Autorepeat is enabled.
- Key click is enabled.
- The FIFO and the output buffer are cleared.
- The keyboard encoder is in the ASCII scan mode.

Software Controllable Features

The following features are software controllable.
AUTOREPEAT - A key is repeated when it is held down. This option may be disabled by software. Also, it can not be selected when in the event-driven (up/down) mode.

KEY CLICK - A click sound is produced when a key is pressed. This function may also be disabled and enabled by software. When in the event-driven mode, a click is produced when a key is pressed and another click is produced when the key is released.

FIFO - The keyboard encoder maintains a 17-key FIFO (first in, first out) buffer in case the master processor cannot service the keyboard immediately. 17 keystrokes can be stored until the master processor is free to service the keyboard. Once the FIFO is full, any keys pressed will be lost because keyboard scanning stops until there is room in the FIFO. The FIFO may be cleared by software, but the data register of the keyboard processor will still contain one key which may be cleared only by reading the register.

EVENT-DRIVEN (UP/DOWN) MODE - When placed in this mode, the keyboard encoder sends a unique (non-standard) code with bit 7 cleared each time a key is pressed, and sends the same code with bit 7 set when the key is released.

USER OPTIONS AND PROGRAMMING

Programming Specifications

Command port address - F5 (hex)
Data port address - F4 (hex)
Status port address - F5 (hex)

I/O Protocol

All I/O to the keyboard should obey the following rules.

Output To Keyboard Encoder

- Wait until KPR (Keyboard Processor Ready) is true (zero). This is found by reading the status port; port F5, bit 1 (D1).
- Output the command to the command port of the keyboard encoder.
- There is no valid information which may be written to the data port. Anything written to the data port will be ignored by the keyboard encoder. Illegal commands will also be ignored by the encoder.

Input Data From Keyboard Encoder

Key codes are the only information which may be read from the data port. There are two ways to determine when a key is waiting to be read.

- Interrupts - If interrupts were selected (see "Command Summary"), an interrupt will be generated whenever a key is placed on the data port. This interrupt is an IR6 to the master 8259A and it is up to the system or user to properly set up the 8259A's. The interrupt request is cleared when the key code is read from the data port. (The IR6 interrupt is shared with the 6845 on the video board such that a video vertical sync pulse or a light pin strobe will also cause an interrupt.)

USER OPTIONS AND PROGRAMMING

- Polling - The KDA (Keyboard Data Available) bit of the status register will always be set when a key is placed on the data port. The bit is cleared when the data port is read.

Input Status From Keyboard Encoder

The status port may be read at any time without disturbing the operation of the keyboard. The bits of the status port are defined as follows:

STATUS REGISTER

KPR - Keyboard Processor Ready. This bit is set to " 1 " when a byte is output to the keyboard. KDA is cleared to " 0 " when the keyboard is ready for input.

KDA - Keyboard Data Available. Indicates that there is a key ready to be read at the data port. KPR is cleared by reading the data port.

USER OPTIONS AND PROGRAMMING

Command Summary

COMMAND
Reset 00
Autorepeat ON 01
Autorepeat OFF 02
Key click ON 03
Key click OFF 04
Clear FIFO 05
Click 06
Beep 07
Enable keyboard 08
Disable keyboard 09
Event driven mode OA
ASCII scan mode OB
Enable Interrupts OC
Disable Interrupts OD

Command Definitions

RESET - Restores the keyboard encoder to its power-up configuration with the following exception:

The RESET command will not clear the data register of the keyboard processor. The only way to do this is by reading the data register.

AUTOREPEAT ON - Enables the autorepeat function. Autorepeat causes a key to be repeated when it is held down. This option is not available in the event-driven mode.

AUTOREPEAT OFF - Disables the autorepeat function.
KEY CLICK ON - Causes a click sound to be heard whenever a key is pressed. When in the ASCII scanning mode, the SHIFT, FAST REPEAT, CTRL, CAPS LOCK, and RESET keys do not produce clicks. When in the event-driven mode, all keys produce two clicks (one down and one up) except the RESET key.

KEY CLICK OFF - Disables the key click function.

USER OPTIONS AND PROGRAMMING

CLEAR FIFO - Empties the keyboard processor's FIFO of any keys which may be in it. The data register of the keyboard encoder is not cleared by this command. Only an input from the data port will clear it.

CLICK - A software command (06) produces one click.
BEEP - A software command (07) produces a beep sound.
DISABLE KEYBOARD - Causes all keystrokes to be ignored except for a CTRL-RESET. The only ways to re-enable the keyboard are with the ENABLE KEYBOARD command, the RESET command, a power-up, or a CTRL-RESET.

ENABLE KEYBOARD - Enables the keyboard after it has been disabled by the DISABLE KEYBOARD command.

EVENT-DRIVEN (Up/Down) - Sending this command to the keyboard encoder causes a different scanning algorithm to be used such that a code is generated when a key is depressed and another code is generated when the same key is released.

Each key has a unique code including CTRL, FAST REPEAT, CAPS LOCK, and SHIFT keys. Therefore, there is no such thing as a shifted key when in this mode. Instead, a byte is output for the SHIFT key and a byte is output for the primary key.

The high order bit is used to distinguish between a key pressed and a key released. When a key is pressed, bit 7 will be 0 . When a key is released, bit 7 will be 1. The RESET key is the only key which does not have a code since it cannot be scanned by the keyboard encoder.

DISABLE INTERRUPTS - Terminates the ENABLE INTERRUPTS function. The keyboard encoder must be polled to obtain a key code.

ENABLE INTERRUPTS - The keyboard processor sends an interrupt to the 8259A whenever a key code is in the output buffer.

THEORY OF OPERATION

The keyboard encoder circuitry basically consists of a Universal Peripehral Interface (UPI) microcomputer. (See the Partial Schematic.) It is a one-chip microcomputer that connects directly to the master processor data bus. The main features of this device are:

- 8-bit CPU
- 8-bit data bus interface registers
- 1 K by 8 bit ROM memory
- 64 by 8 bit RAM memory
- Interval timer/event counter
- Two 8-bit TTL compatible I/O ports
- Resident clock oscillator

IC's U199 and U184 are dual 2-line-to-4-line decoders that function as I/O line expanders to increase the effective number of output lines from the keyboard encoder. The outputs of the line expanders are applied to the connector P105 and then to the columns of the keyboard. (See Pictorial 3-1.) When one of these output lines at P105 goes low, then any key closure (of a key attached to that particular column) will be detected as the keyboard encoder IC scans the keyboard rows (through plug P107). The encoder then puts a code on the data bus that corresponds to the detected key closure.

Pin 38 of U204 pulses to generate the bell and key clock sounds. U183 NORs this line with pin 22 to generate the bell. When U183 pin 1 goes low, it triggers the one-shot at U218B. U218 pin 10 pulses high for about 200 ms to gate U232 pin 3 , the $1-\mathrm{kHz}$ oscillator, through U231 to the speaker.

To generate a key click, the negative edge of pin 38 directly fires the one-shot at U218A pin 5. Pin 6 of this IC goes high for about 10 ms to gate U232 through U231 to the speaker. Note that the click line asserts whenever the bell does. However, since both circuits use the same oscillator, the click is not heard.

THEORY OF OPERATION

TROUBLESHOOTING

Use the following chart to help you identify the source of problems. The chart lists conditions and possible causes for specific problems. If you cannot resolve the problem, refer to the warranty and service information supplied with your Computer.

If you have electronics service skill, you may wish to service some problems yourself. In the following chart, if a particular part is mentioned, check that part and other components that are associated with it. Remember to locate and correct the cause when components are damaged, or the problem could reoccur.

Refer to the "Circuit Board X-Ray Views" for the physical location of parts on the circuit boards.

PROBLEM	POSSIbLE CAUSE
Keyboard does not function.	1. Keyboard in disabled mode. RESET the Computer. 2. Keyboard cables disconnected. 3. U204.
No key click.	1. Key click disabled. RESET the Computer.
No key click or beep.	1. Audio transducer X101. 2. U218, U231, or U232.
Autorepeat function does not work.	1. Autorepeat function is off. RESET the Computer. 2. Keyboard in event-driven mode. Select desired keyboard scan mode (ASCII mode). Autorepeat functions only in ASCII mode.
Encoder puts wrong code on data bus.	1. Keyboard in event-driven mode. Select desired keyboard scan mode (ASCII mode).
Computer will not reset.	1. RESET key always open. 2. U183 or U185, or U103. 3. CTRL key is always open

Pictorial 3-1
Keyboard Matrix

ENCODER OUTPUT CODES (HEX)

After a key is detected as being down, the keyboard encoder places a byte on its data bus which represents only the depressed key. The codes for some of the keys depend on the state of the "modifier" keys - SHIFT (right or left), CTRL (control), and CAPS LOCK. Some keys are not affected by any of the modifiers, such as the DELETE key. Its code (7F) is always the same, such as the DELETE key. It's code (7F) is always the same, regardless of the modifier key's positions. Other keys are affected by all of the modifiers, such as the "A" key.

In the following table, an "NC" under a modifier indicates that no code is generated for that key.

The CAPS LOCK column has a Y (yes) or N (no) to indicate if the CAPS LOCK key affects the output code or not. The CAPS LOCK key functions as a SHIFT key, but only for the alphabet keys.

Each key has a code for when it is pushed down. However, in its event-driven mode (key up/down mode), each key also has a different code for when it starts back up again. These are listed as Down Codes and Up Codes. (The "up code" equals the "down code" plus 80 hex.)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
1							
0	30	29	30	29	N	$5 B$	DB
$!$							
1	31	21	31	21	N	57	D 7
$@$ 2	32	40	32	00	N	56	D 6
$\#$ 3	33	23	33	23	N	55	D 5
$\$$ 4	34	24	34	24	N	54	D 4

Page 3.13
ENCODER OUTPUT CODES (HEX)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
$\begin{gathered} \% \\ 5 \end{gathered}$	35	25	35	25	N	53	D3
$\hat{6}$	36	5E	36	1E	N	52	D2
$\begin{aligned} & \& \\ & 7 \end{aligned}$	37	26	37	26	N	51	D1
8	38	2 A	38	2A	N	50	D0
$\begin{aligned} & 1 \\ & 9 \end{aligned}$	39	28	39	28	N	5A	DA
A	61	41	01	01	Y	07	87
B	62	42	02	02	Y	13	93
C	63	43	03	03	Y	15	95
D	64	44	04	04	Y	05	85
E	65	45	05	05	Y	OD	8D
F	66	46	06	06	Y	04	84
G	67	47	07	07	Y	03	83
H	68	48	08	08	Y	02	82
1	69	49	09	09	Y	08	88
J	6 A	4A	OA	OA	Y	01	81
K	6B	4B	OB	OB	Y	00	80
L	6C	4C	OC	OC	Y	10	90

Page 3.14

ENCODER OUTPUT CODES (HEX)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
M	6D	4D	OD	OD	Y	11	91
N	6E	4E	OE	OE	Y	12	92
O	6F	4F	OF	OF	Y	19	99
P	70	50	10	10	Y	1A	9 A
Q	71	51	11	11	Y	OF	8F
R	72	52	12	12	Y	OC	8C
S	73	53	13	13	Y	06	86
T	74	54	14	14	Y	0B	8B
U	75	55	15	15	Y	09	89
V	76	56	16	16	Y	14	94
W	77	57	17	17	Y	OE	8E
X	78	58	18	18	Y	16	96
Y	79	59	19	19	Y	OA	8A
Z	7A	5A	1A	1A	Y	17	97
BACK SPACE	08	08	08	08	N	5F	DF
TAB	09	09	09	09	N	4E	CE
LINE FEED	OA	OA	OA	OA	N	44	C4
RETURN	0D	OD	OD	0D	N	4C	CC

Page 3.15

ENCODER OUTPUT CODES (HEX)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
ESC	1B	1B	1B	1B	N	4F	CF
SPACE	20	20	20	20	N	45	C5
",	27	22	27	22	N	48	C8
	2 C	3C	2C	3C	N	4D	CD
	2D	5F	2D	1F	N	5C	DC
>	2E	3E	2E	3E	N	4A	CA
$\begin{aligned} & ? \\ & 1 \end{aligned}$	2F	3F	$2 F$	3F	N	4B	CB
	3B	3A	3B	3A	N	49	C9
+ $=$	3D	2B	3D	2B	N	5D	DD
[5B	7B	1B	7B	N	59	D9
1	5C	7C	1 C	7 C	N	43	C3
\}	5D	7D	1D	7D	N	58	D8
\sim	60	7E	60	7E	N	5E	DE

Page 3.16

ENCODER OUTPUT CODES (HEX)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
DELETE	7F	7F	7F	7F	N	42	C2
ENTER	8D	CD	8D	CD	N	38	B8
HELP	95	D5	95	C5	N	46	C6
F0	96	D6	96	D6	N	27	A7
F1	97	D7	97	D7	N	26	A6
F2	98	D8	98	D8	N	25	A5
F3	99	D9	99	D9	N	24	A4
F4	9A	DA	9A	DA	N	23	A3
F5	9B	DB	9 B	DB	N	22	A2
F6	9 C	DC	9 C	DC	N	21	A1
F7	9D	DD	9D	DD	N	20	A0
F8	9E	DE	9E	DE	N	29	A9
F9	9F	DF	9F	DF	N	2A	AA
F10	AO	E0	AO	EO	N	2B	AB
F11	A1	E1	A1	E1	N	2 C	AC
F12	A2	E2	A2	E2	N	2D	AD

Page 3.17

ENCODER OUTPUT CODES (HEX)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
$\begin{aligned} & \text { D CHR } \\ & \text { I CHR } \end{aligned}$	A3	E3	A3	E3	N	2 E	AE
D LINE I LINE	A4	E4	A4	E4	N	2 F	AF
(up arrow)	A5	E5	A5	E5	N	3B	BB
(down arrow)	A6	E6	A6	E6	N	3A	BA
(right arrow)	A7	E7	A7	E7	N	33	B3
(left arrow)	A8	E8	A8	E8	N	3F	BF
HOME	A9	E9	A9	E9	N	37	B7
BREAK	AA	EA	AA	EA	N	47	C7
- (keypad)	AD	ED	AD	ED	N	39	B9
. (keypad)	AE	EE	AE	EE	N	40	Co
0 (keypad)	B0	F0	B0	F0	N	41	C1
1 (keypad)	B1	F1	B1	F1	N	34	B4
2 (keypad)	B2	F2	B2	F2	N	3C	BC
3 (keypad)	B3	F3	B3	F3	N	30	B0
4 (keypad)	B4	F4	B4	F4	N	35	B5
5 (keypad)	B5	F5	B5	F5	N	3D	BD
6 (keypad)	B6	F6	B6	F6	N	31	B1

ENCODER OUTPUT CODES (HEX)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
7 (keypad)	B7	F7	B7	F7	N	36	B6
8 (keypad)	B8	F8	B8	F8	N	$3 E$	BE
9 (keypad)	B9	F9	B9	F9	N	32	B2
FAST REPEAT	NC	NC	NC	NC	N	60	E0
CAPS LOCK	NC	NC	NC	NC	N	61	E1
SHIFT (right)	NC	NC	NC	NC	N	62	E2
CTRL	NC	NC	NC	NC	N	63	E3
SHIFT (left)	NC	NC	NC	NC	N	64	E4
RESET	NC	NC	(NC) Resets	(NC) Resets	N	NC	NC
			Computer	Computer			

Pictorial 3-2 shows the key layout of the keyboard.

PICTORIAL 3-2
Keyboard Layout

Video Logic Board

Description 4.2
User Options and Jumpers 4.3
Theory of Operation 4.5
Programming Data 4.29
Circuit Description 4.48
Troubleshooting 4.69
Replacement Parts List 4.70
Semiconductor Identification 4.72
Circuit Board X-Ray View 4.106
Interconnect Pin Definitions 4.107
Schematic (Inside Envelope at rear of manual)

DESCRIPTION

The video logic board produces video signals for an internal (in the All-In-One model) or external (Low-Profile model) video monitor. (An external monitor is also used with the All-In-One model for color displays.)

Signals available include composite monochrome video, composite sync, horizontal sync, vertical sync, and three planes of noncomposite video for use with RGB type color monitors.

The normal display format is 25 rows of 80 characters, with each character consisting of an 8 wide by 9 high character cell. However, as the video board uses bit-mapped pixel display technology, character cell boundaries are arbitrary and the display may be more generally thought of as a $640 \times$ 225 pixel graphics display. Also, the video board may be programmed for nonstandard alternate formats, including interlaced displays of up to 640×525 pixels or multipage displays. Some nonstandard formats will require 64 K video memory chips.

PICTORIAL 4-1
Video Logic CIrcult Board

PICTORIAL 4-2

Refer to Pictorial 4-1 as you read the following information.

Circuit Board Jumpers

The video logic circuit board jumpers perform the following functions:

J301 - Selects the polarity of the vertical sync signal for the internal monitor. Putting the jumper on the "-" marked side selects negative polarity. This is its normal position.

J302 - Selects the polarity of the horizontal sync signal for an external RGB monitor. Placing the jumper on the " + " marked side selects positive polarity. H is the normal position.

J303 - Selects either composite sync or vertical sync for the external RGB monitor. Placing the jumper on the " V " marked side selects vertical sync. This is the normal position.

J304 - Selects the polarity of the synchronization signal selected by J303. V/C is the normal position.

J305 \& J306 - These jumpers select color or black and white video. For color, both jumpers must be on the side marked "RGB." For monochrome, both jumpers must be on the side marked "G." When you are using color, all three RAM banks are enabled and must have RAMs installed. For monochrome, only the green bank is used.

USER OPTIONS AND JUMPERS

J307 - This jumper allows for different types of RAM to be used.

1. If the jumper is placed on the side marked "LOW 32 K ", lower 32 K type RAM chips are selected.
2. If the jumper is placed on the side marked " 64 K ", 64 K type RAM chips are selected.
3. If no jumper is installed, upper-type 32K RAM chips are selected.

Black Level Control

This control (R307) should be set initially at the 1 o'clock position, as shown, and then adjust (if necessary) for a desired display. You do not need to readjust this control if you are using a monitor that has its own black level control.

Contrast Control

Set this control (R301, not installed on all units) fully counterclockwise.

THEORY OF OPERATION

General Theory

The video logic board signals produce 25 lines of characters on the display screen with 80 characters per line. The board also controls the display colors or gray scales, depending on whether a color or monochrome display is used, and it contains the light pen circuitry.

NOTE: In the following description, the 25 character lines are numbered 0 through 24 and the 80 characters per line are numbered 0 through 79 .

Matrix Scheme

Pictorial 4-2 (Fold-out from Page 4.2) shows the 225 horizontal scan lines, produced by the video deflection circuits, that make up the video display on the screen. These 225 scan lines are logically grouped so that every nine scan lines function together to produce one character line. (See the inset drawing.) The result of this grouping is 25 character lines on the screen (225/9 = 25).

Each of the 25 character lines can display 80 characters. As shown in the inset drawing, each character is made up of 72 dots (called pixels) from an 8×9 pixel matrix (8×9 $=72$). The character that is displayed depends on which pixels are turned on. In the inset drawing, the proper pixels are turned on to display the number 7 .

Each pixel has an address in memory and can be turned on individually. Font tables, which define the shape of each character, are contained in the ROM and are down-loaded into system RAM during the boot sequence. Each character in the font consists of nine 8 -bit bytes of data ($8 \times 9=72$ bits). Therefore, by changing a character's font data bytes, a character can be redefined to any one of 2 to the 72 nd power character shapes.

The present font is arranged as shown in the ASCII chart in the "Programming Data" section of this Manual (Page 10.31).

THEORY OF OPERATION

After a keyboard key is pressed (" 7 ", for example) and software determines that it is time to display the character, the main microprocessor obtains the nine bytes of data that define the character's shape from the " 7 " entry in the font table and places these nine data bytes in proper locations in video memory. [The memory locations to modify are a function of which character row ($0-24$) and column ($0-79$) the " 7 " is to appear at.] Then, when the display scan lines are refreshed by reading the contents of video memory, the character will be properly displayed on the screen along with any other characters that have been entered.

Color Display

To produce color, a separate memory plane (array) of video RAM is used for each of the three main colors: red, green, and blue. All the bytes of video RAM that describe a particular color are organized sequentially in 64 K (or possibly 32K) byte pages of RAM. The pixel seen on the screen is essentially composed of three superimposed pixels, one in each color plane. Since each of the three color pixels may be on or off, eight different colors are possible. The colors and how they are generated is as follows:

0 - That color pixel is off
1 - That color pixel is on

Green Red Blue

0	0	0	- Black, no pixels on
0	0	1	- Blue
0	1	0	- Red
0	1	1	- Magenta
1	0	0	- Green
1	0	1	- Cyan
1	1	0	- Yellow
1	1	1	- White

THEORY OF OPERATION

If you only want monochrome, you need only one of the three memory planes. Green is used because the green gun is set for greatest intensity for proper color displays.

If a monochrome display is used with the three memory planes, eight levels of intensity (brightness) can be produced, which corresponds to the above colors. White is the most intense, and black is the least intense.

Light Pen

The light pen is a light detector rather than a light generator. When the pen is turned on and held against the screen, it produces a pulse when the first pixel within its scope is turned on. When this pulse is generated, the present byte address is saved and decoded, and the precise pixel location is remembered.

THEORY OF OPERATION

Detailed Theory

When software determines that it is time to display a character, the main processor (8088) obtains nine bytes of data that define the character's shape from the font table and places the bytes in proper locations in video memory (VRAM). Then, when the display scan lines are refreshed by reading out of video memory, the character will be properly displayed on the screen.

The following pages describe, in detail, how the above video logic functions are performed. The description will first discuss a simple character - generator based video system and then build into the more complex bit-mapped system used in the Z-100 family of Computers.

Basic Video System

Refer to Pictorial 4-3. The Pictorial shows a basic video system for a 25 -character line display that has 9 scan lines per character line and 80 characters per character line.

The microprocessor places a byte of data in the $2 \mathrm{~K} \times 8$ character RAM for each character on the screen ($80 \times 25=$ 2000). Each data byte represents one of the 128 characters in the character generator ROM, where each of the 128 characters is itself defined by nine data bytes.

The CRT controller (CRT-C) systematically interrogates the character RAM with its 11-bit character counter. It selects character after character until all 80 characters in the row have been selected. During this time, the CRT-C 4-bit scan line counter has selected the first scan line. As each of the 80 characters in RAM is selected, its 7 -bit code selects the proper character in the character generator ROM. That character's top byte (part of the first scan line) is shifted out to the video deflection circuits and displayed on the screen. The CRT-C selects these 80 characters and the first scan line is displayed.

PICTORIAL 4-3
Simple System Block Diagram

PICTORIAL 4-4
Add Memory And Counters

THEORY OF OPERATION

Then the CRT-C selects these same 80 characters again and again, as the 4-bit scan line counter selects one scan line after another until all nine scan lines of the first character row are displayed. Then the 4-bit scan line counter starts over and the 11-bit character counter selects the next character row in memory. This continues until all the character rows have been selected and the screen is fully displayed.

If reverse video has been selected, then the complement of each bit is sent to the video generation circuits.

THEORY OF OPERATION

Conversion From Character-Based To Pixel-Based Display

Refer to Pictorial 4-4 (Fold-out from Page 4.8). If we combine the 4 -bit scan line address with the 12 -bit video refresh address, then a 16-bit address is produced as shown. Also, if we increase the RAM size to 32 kilobytes, we have enough memory to store not only every character ($80 \times 25=2000$ bytes), but all nine bytes of every character ($80 \times 25 \times 9$ $=18000$ bytes).

When a program prints a character, all nine bytes of the character's font pattern are looked up in memory and stored in the $32 \mathrm{~K} \times 8$ video RAM. Color is achieved by superimposing two other 32K $\times 8$ RAM "pages." These three pages of RAM are used for the red, green, and blue colors. If 64 K RAMs are used, the contents of two screens can be placed in memory. As shown, each section of RAM has its own shift register.

Notice that the microprocessor is now connected directly to video RAM. This is so it can write data into the RAM, read data out of the RAM, and select various RAM options that are discussed later.

THEORY OF OPERATION

Actual Theory

The following paragraphs describe the actual video operation of the Z-100 family of Computers. As shown in Pictorial 4-5, the video logic board consists of:

- A CRT controller.
- A video RAM mapping module.
- Three video RAM planes (arrays).
- Light pen circuitry.

The video RAM mapping module receives addresses from the 8088 microprocessor and changes these addresses into actual video RAM addresses. The address change is done to simplify software.

As shown in Pictorial 4-6, one of the sections of CPU address memory that is not used is "Area B." The RAM mapping module changes the CPU addresses into a more compact sequence such that only the "Displayed Area" data of Pictorial $4-6$ is placed in video RAM and the nondisplayed area, "Area B," is ignored.

In Pictorial 4-5, video information is shifted out of video RAM and sent to the video deflection circuits or monitor while the CRT-C sends the sync and timing signals. These RAM signals consist of the data to be displayed on the screen and the sync and timing signals that are necessary to start new scan lines.

The video RAM planes consists of 32 or 64 kilobytes of RAM. The RAM holds one or two screens (with 64K parts) of data that is shifted out and displayed on the screen.

THEORY OF OPERATION

CRT-C (CRT Controller)

The screen is updated 60 times per second (when set for 60 Hz), with data (characters) from video RAM. During a sweep of the display beam, the CRT-C generates video RAM address VRAMA2 (see Pictorial 4-5) and reads a byte representing eight pixels. Once these pixels are displayed, the CRT-C automatically advances to the next byte that describes the next group of eight pixels. This process continues until the scan line is completed.

Each byte of video RAM represents eight pixels on the display. Three superimposed bytes are required to fully specify a color pixel. However, for now, consider each pixel to be simply monochrome.

The video RAM address (VRAMA2) is a 16-bit address. Bits 0 through 3, called R3-R0, make up the scan line counter and bits 4 through 15, the memory refresh address MA11MAO, select the bytes that make up the scan line when the screen is refreshed.

The organization of these scan lines and memory refresh lines, as seen by the CRT-C controller, is crucial to understanding the memory organization. They are organized as follows:

This 16-bit address is presented directly to the video RAM. The CRT-C increments the memory refresh address (MA11MAO) from the first character address of the line to the last character address of the line for the first scan line. The scan line address, R3-R0, is then incremented. The memory refresh address is then incremented once again from that same first character address to the final character address for the second scan line. This is repeated until all nine scan lines for the character line have been displayed.

PICTORIAL 4-5
Video Block Dlagram

64 K

NOTES:

1. The boundry between the displayed and the non-displayed areas varies in address depending on the screen mode 19 lines per character, 16 line graphics, etc.l.
2. In a system with 32 K RAM's installed, areas 'A' and ' B^{\prime} wrap back into the displayed 32 K space.
3. In a system with 64 K RAM's installed areas ' A ' and ' B^{\prime} are addressed by setting the address latch to 80 H (assuming the start adoress is øø).
0 CRT-C MAPPED ADDRESS SPACE

PICTORIAL 4-6
Video Memory Layout

THEORY OF OPERATION

Once all the scan lines for the character line have been sequenced through, the base address for the memory refresh address (MA11-MA0) is advanced to the first character of the next line. This process is repeated until all lines have been displayed on the screen, at which time vertical retrace takes place. After retrace, the memory refresh address is reinitialized to its start address, and the process repeats.

The CRT-C is programmed for nine scan lines per character, 80 characters per line, and 25 character lines per screen. The addresses shown in Pictorial 4-7 are generated by the CRT-C for each given group of eight pixels (byte of video RAM).

	lst Char Column	2nd Char Column	3rd Char Column	80th Char Column
lst Char, lst Pixel Row	0	16	32.	1264
lst Char, 2nd Pixel Row	,	17	33.	1265
lst Char, 3rd Pixel Row	2	18	34.	1266
lst Char, 4th Pixel Row	3	19	35.	1267
lst Char, 5th Pixel Row	4	20	36.	1268
lst Char, 6th Pixel Row	5	21	37.	1269
lst Char, 7th Pixel Row	6	22	38.	1270
Ist Char, 8th Pixel Row	7	23	39.	1271
lst Char, 9th Pixel Row	8	24	40.	1272
2ndChar, lst Pixel Row	1280	1296		2544
	1281	1297		2545
	1282	1298		2546
3rd Char, lst Pixel Row	1288	1304	...	2552
	2560			3824
25th Char, 1st Pixel Row	30720	30736		31984
25th Char, 9th Pixel Row	30728	30744		31992
Ist character	0.16	$1 \cdot 16$	2*16	. $79^{\circ} 16$
	$0 \cdot 16+1$	$1 \cdot 16+1$	2•16+1.	. $79 \cdot 16+1$
	$0 \times 16+2$	$1{ }^{1} 16+2$	$2 \cdot 16+2$.	. $79 \cdot 16+2$
	$0 \cdot 16+3$	$1 \cdot 16+3$	$2 \cdot 16+3$.	. $79 \cdot 16+3$
	$0 \cdot 16+4$	1.16+4	$2 \cdot 16+4$.	. $79 \cdot 16+4$
	$0{ }^{\circ} 16+5$	1-16+5	$2 \cdot 16+5$.	. $79 \cdot 16+5$
	$0 \cdot 16+6$	$1 \cdot 16+6$	$2 \cdot 16+6$.	. $79 \cdot 16+6$
	$0 \cdot 16+7$	1-16+7	$2^{\circ} 16+7$.	. $79 \cdot 16+7$
	$0^{\circ} 16+8$	1-16+8	$2 \cdot 16+8$.	. $79 \cdot 16+8$

PICTORIAL 4-7
CRT-C Memory Addressing

THEORY OF OPERATION

In general (assuming the start address is 0), the address of byte "c", scan line " s ", and row " r " would be:

$$
r \times 80+c \times 16+s
$$

row $r, \quad 0 \leq r \leq 24$
scanlines, $0 \leq \mathrm{s} \leq 8$
character $\mathrm{c}, 0 \leq \mathrm{c} \leq 79$
One way to scroll the text on this bit-mapped video system would be to move the bytes from one location to another. By moving each byte to the address 128 bytes lower than itself, the entire screen would be effectively scrolled one scan line. (The last scan line should be zeroed to avoid displaying incorrectly initialized memory.) However, this method is not used because of insufficient microprocessor speed and screen ripple.

Scrolling is achieved by adding 1280 bytes (80×16) to the start address. The CRT-C begins refreshing the screen from what would normally be the second character line, but displays those characters on the first character line. If the CRT-C parameters have not been changed, an additional line will be displayed at the bottom of the screen as scrolling occurs. Normally, the bottom line is zeroed by the microprocessor during vertical retrace before the start address is advanced. This keeps uninitialized data from being displayed.

Because the start register is modified during vertical retrace, no characters are displayed at this time, which avoids a momentarily jumbled screen generated from a partially updated start address. To provide vertical synchronization, a video board interrupt is generated.

THEORY OF OPERATION

Actual Theory

Video RAM Mapping Module

As shown in Pictorial 4-2, the rows are numbered 0 through 24 and the characters, or columns, are numbered 0 through

Using the physical addresses shown in Pictorials 4-7 and 4-8 would make programming difficult. Therefore, to simplify things, the video RAM mapping module remaps the video RAM as seen by the 8088 so that pixel addresses are constant without regard to scrolling, and appears in the following chart.

BYTES

Row 0:	$0,1,2 \ldots$	79
Row 1:	$128,129,130 \ldots$	$79+128$
Row 2:	$0+\left(2^{*} 128\right), 1+\left(2^{*} 128\right), 2+\left(2^{*} 128\right), \ldots$	$79+\left(2^{*} 128\right)$
Row N:	$0+\left(\mathbf{N}^{*} 128\right), 1+\left(\mathbf{N}^{*} 128\right), 2+\left(\mathbf{N}^{*} 128\right), \ldots$	$79+\left(\mathbf{N}^{*} 128\right)$
Row 391:	$0+\left(391^{*} 128\right), 1+\left(391^{*} 128\right), 2+\left(391^{*} 128\right), \ldots$	$79+\left(391^{*} 128\right)$
Row 392:	$0+\left(392^{*} 128\right), 1+\left(391^{*} 128\right), 2+\left(392^{*} 128\right), \ldots$	$79+\left(392^{*} 128\right)$

THEORY OF OPERATION

Notice that there are "holes" in the addressing map. These holes correspond to the characters $80-127$ of each row. Since these are illegal character numbers for each row and will not be displayed, you should avoid these addresses. Using them may inadvertantly modify pixels of VRAM which you do not intend to modify. Also, notice that whole lines, 9 through 15, 25 through 31, etc., are not displayed. The last displayed line number is 392 (decimal). These nondisplayed line addresses may be used.

The video RAM mapping module reorganizes the video RAM addresses. It first shifts the X coordinate (horizontal byte index) lines left by four bits. This effectively multiplies the X value by 16. In Pictorial 4-9, the X coordinate is shown split into two pieces to emphasize that both parts are subsequently treated differently. Since the number of bytes per line is 80 , the low 4 bits of X range from 0 to 15 five times. Because 80 is a multiple of $16(5 \times 16=80)$, they do so evenly. The high 3 bits of the X coordinate range from 0 through 4 for each line of bytes.

Referring back to Pictorial 4-7, we see that consecutive bytes along the scan line of video RAM are consecutive multiples of 16 plus the scan line within the character index. By shifting the low order 4 bits of the Y coordinate (vertical coordinate, that is the scan line) into the low order 4 bits of the output address just vacated by shifting X ieft, we effectively add in the "scan line counter" component of the video RAM address as generated by the CRT-C.

PICTORIAL 4-9
Video RAM Mapping Module

THEORY OF OPERATION

Remembering that X is less than 80 , you see that the high address byte does not "sequence" nicely. As sequential horizontal byte addresses are generated for each scan line, the values being generated for the high byte of the address (before they enter the mapping ROM) are:

The mapping ROM converts one steadily increasing sequence of addresses into a more compact sequence of similar increasing addresses. The mapping ROM takes the data value presented at its input address and outputs the 8 -bit value found that corresponds to this internal address. In this way, the "holes" in the logical address space are removed.

THEORY OF OPERATION

Several mapping samples are shown below.

Y (row index)			
	X (column index)		
		VRAMA1 address	
		1	
0	0	0000H	0000H
0	1	0001H	0010H
0	2	0002H	0020H
0	79	004FH	04FOH
1	0	0080H	0001H
1	1	0081H	0011H
1	2	0082H	0021H
4	0	0200H	0004H
15	0	0780H	000FH
15	79	07CFH	04FFH
16	0	0800H	0500H

The above table shows the address output based on the value input. It also shows that once all the legal input addresses have been assigned to their corresponding sequential output addresses, the remainder of the physical, or CRT-C RAM, addresses are assigned sequentially to the logical holes. Since 50 H is the first illegal value for the byte of the logical address, it is assigned the address of the first illegal CRT-C address (based on the assumption of 512 lines of 80 bytes). Note that these addresses are assigned sequentially in columns 5-7 and D-F much as the logicals are assigned in columns 0-4 and 8-C.

THEORY OF OPERATION

The full address generated out of the mapping ROM reorganizes the conventional notation into the desired CRT-C address. The 8 -bit adder is used in scrolling the screen by advancing the start address. Once the start address is advanced, the data representing the line on the screen is in a different physical address. It is in the place where the old representation for character line 2 was (since it, in fact, is the old representation for character line 2). It is important to understand that data itself does not move. For this reason, the last line on the screen may be in what now is "scrambled" memory. Refer to Pictorials 4-6 and 4-9 and consider the following:

Once the start address is advanced, the new boundaries are as follows:

The data the represents the last line is in a scrambled data area. For this reason, the adder was added to translate the physical addresses.

THEORY OF OPERATION

By translating the physical address, it is possible to move the mapping function along so that it operates on consecutive "lines" of RAM. The use of this adder is analagous to that of a magnifying glass. The magnifying glass makes a small portion of text easier to read by enlarging the print. The video RAM mapping module has, up to this point, made video RAM easier to address. To reference data outside the area of the magnifying glass, it is simply moved to the new data area. Once the screen image has been "effectively" moved, as is essentially done when the start address of the CRT-C is advanced, the mapping function must be moved.

When the adder is correctly initialized and maintained, the bytes representing line 25 are always in the same logical address. This frees the software routines from maintaining a pointer and indexing into the screen data based on the start address. All references to a particular line of data are fixed with respect to the 8088 . Furthermore, since the video RAM mapping module is between the 8088 and video RAM, its operation/maintenance do not affect screen refresh in any way. It must only be maintained for easy references to the CRT-C RAM from the CPU.

Pictorial 4-9 shows an 8-bit adder. This adder has been discussed as though it were a full 16-bit adder. In concept, it is. An 8 -bit adder is sufficient, however, because the value to be added to this address will always be a multiple of 80^{*} $16=5^{\star} 16^{*} 16=5^{*} 256$. In the implementation, adding $\mathrm{n}^{\star}\left(5^{*} 256\right)$ to the address is equivalent to adding $\mathrm{n}^{*} 5$ to the high order byte of the address because multiplication by 256 is equivalent to shifting left by eight bits. This does assume that the start acidress will also be a multiple of $80^{* 1} 16$. If the start address is initialized to 0 , subsequent scrolling operations can maintain it as a multiple of $16 * 80$.

The bits inside each byte of video RAM are mapped to pixels as follows:

THEORY OF OPERATION

This means that the value of the byte to turn on the following " x " marked pixel would be one.

```
0000000X
```

Similarily, 85 (55 hex) would turn on the following pixels:

0X0X0X0X

To display the pixel in the upper left-hand corner of the screen, 128 (80 hex) would be stored in address 0 of video RAM. The displayed byte would look like:

THEORY OF OPERATION

Video RAM

Each of the three video planes reside in a distinct 808864 K byte segment. The green plane is at address E 0000 H , the red plane is at address D 0000 H , and the blue plane is at address C 0000 H . In a monochrome system, the green plane is used because video conventions dictate that this plane be of highest intensity. This provides sufficient intensity levels on the monitor without the sensitivity levels being overadjusted.

The planes are organized in decreasing order of relative intensity, with the highest - green - at the top of the available memory space. (The plane addressed at F 0000 H is reserved for ROM.)

With a monochrome monitor, eight levels of intensity are available with all the video RAM installed. Each level of intensity corresponds to one of the possible colors previously mentioned; white is brightest and black is darkest, no pixels on. Green is 59% of full luminescence, red is 30% of full luminescence, and blue is 11% of full luminescence. In the generation of intensity levels, the luminescence levels add algebraically so that magenta, being composed of red and blue, is 41% of full luminence.

Because each intensity level corresponds to a color, intensity levels and colors are identical from a software point of view; color produces intensity levels and intensity levels produces color.

Normally, all three video RAM planes are used to update the screen. However, three bits have been provided to disable the displaying of individual video RAM planes. The displaying of one, two, or all three of the planes can be disabled.

THEORY OF OPERATION

Another bit totally disengages all planes of video RAM from the CPU. When disengaged, the CPU can neither write to nor read from VRAM. This makes sure that VRAM does not conflict with the boot ROM. Note that though the RAM may be disengaged from the CPU, any enabled planes will be displayed on the monitor. Also, when video RAM is enabled and accessed, the "PHANTOM" line is asserted on the S-100 bus.

The remaining bits associated with the video RAM are all designed to optimize various software functions. The first of these is the "plane write" bits. These allow you to access and modify multiple planes of RAM simultaneously.

There is one write bit for each of the three VRAM planes - red, green, and blue. When all of the bits are set high, writing to any of these planes affects only that plane. However, if the write-green bit is set to zero, any writes to the red or blue planes will be made to the green plane also. But, if only the green plane is written to, only the green plane will be changed. Also, the write bits have no effect on the read operations of any plane.

Write bits can be used to produce colored characters on a black background. Just set the write bits to the appropriate combinations for the desired color and write the character to one of the planes. Note, however, that the pixel patterns of the planes must be identical or this mode may not be used.

Write bits can also clear a screen. If you set all the write bits to zero (active low), all the video planes can be zero'ed at once. Setting the planes to a selected background color requires at most two passes. The first pass might zero all planes, and the second one would write all "ones" to the planes that make up the background color. For example, to set the monitor background color to magenta, set write-green and write-red to zero. Then clear the blue plane by zeroing all the bytes. Next, clear the write-red bit to zero and set writeblue and write-green to one. Writing all "ones" to the blue plane will write these same patterns to the red plane.

THEORY OF OPERATION

There are two other bits that control screen functions. These two bits may be used to clear the screen without explicitly modifying each byte of the plane with a memory modification generated by the 8088 . These bits do not work in conjunction with the write bits and, in fact, override them. They also override the VRAM enable bit, the FLASH bit, and the three plane enable bits. While the clear screen bit is set, each bit of each byte of video RAM addressed by the CRT controller is set to zero or one, depending on the value of the screen's set polarity bit. All planes are quickly modified by this mode and should be used carefully.

Light Pen

General Theory

The light pen is actually a light detector. It detects light and provides a pulse compatible with the logic used in the Computer. If this pulse is used to latch the position where the light pen hit occurred, the software can modify the corresponding memory location and produce the desired results.

The CRT controller (CRT-C) used in the Z-100 has the provision only to store the character number (relative position of the character where the light pen hit occurred with respect to the top left-hand corner of the screen). External circuitry is provided on the video board to also store the scan line number of the character and the pixel position within that line (byte). Thus, the light pen circuitry is capable of resolving a single pixel within the array of 640×225, or 640×450 pixels when in the interlace mode. This assumes, of course, that the light pen used is sensitive enough.

THEORY OF OPERATION

Technical Description

Most light pens, in addition to providing a pulse from a detector, also provide a switch. U134-B (LS14, pins 3 \& 4, located on the main circuit board) buffers the switch input and feeds it to $U 114$ pin 8 (PA6 - bit 6 of port A of 68A21). Software can poll this input and detect whether the switch is closed or open, and proceed accordingly.

Light pen connector J 4 has three more pins in addition to the switch mentioned above. Two pins are for power; ground and $\mathrm{Vcc}(+5 \mathrm{~V})$. The remaining pin is for the pulse output from the light pen. U134-C(LS14, pins 5 \& 6) buffers this signal.

Most pens produce a negative-going pulse. Therefore, inverter U134, pin 6, is used to provide the necessary positive-going pulse $F L$. An additional inverter is provided (U134, D) in case the pen generates a positive-going pulse. J103 is a 3 -pin jumper which selects the positive- or negative-going pulses.

The positive-going pulse is fed to the clock input of U131 pin 3 (74ALS74). The CLR input of that flip-flop (pin 1) is driven by U 114 pin 9 (PA7 - bit 7 of port A). If this bit is cleared to zero, the flip-flop will stay cleared and the Q output will not generate the LTPNSTB (light pen strobe) signal.

Assume that this bit is set to one (1). Since the data input of the flip-flop (pin 2) is tied to +5 volts through a resistor (marked HI1 in the schematic), the flip-flop is ready to be clocked. When a positive-going pulse is fed to the clock input, the Q output will be set (logic high); so the LTPNSTB signal will make a positive transition $-\digamma^{-}$. Subsequent light pulses will not affect the output until the software clears the flip-flop by toggling its clear input.

THEORY OF OPERATION

The LTPNSTB signal is applied to video logic board U362 pin 12, the D input of a 74ALS74 flip-flop. This is synchronized by video clock signals and the final output is taken from U356 pin 9 (the Q output of the flip-flop). The signal is then applied to U330 pin 3 (CRT-C - LPSTB input). When a positive transition occurs on this input, the CRT-C latches the value of MAOMA13 in the internal registers. (Refer to the Device Data Sheet for HD 68A45 for more details.) This, in essence, is how the CRT-C stcres the character position.

The scan line value and a pixel position within a given byte are still needed. U356 pin 5 synchronizes LTPNSTB with video DOT CLK to generate PENSTBD (pen strobe delayed), which is fed to U315-74LS374 - an octal flip-flop. Four of its inputs are RA0-RA3. Hence, on the occurrence of PENSTBD, these four bits will be clocked into U315, which can be read out by software. (The information is available on the most significant nibble, D4-D7.) U324 is a counter configured as a "DOWN COUNTER". It's outputs, DOT0-2, are also fed into octal register U315. Hence, the signal PENSTBD will clock these three bits also. Therefore, U315 will provide the scan line number as well as pixel position within a given byte.

Software Considerations

For the following discussions, you should first read the description of the mapping of the video memory from the CPU and CRT-C points of view presented earlier in this section.

Once the light pen hit has occurred, the problem is how to find the pixel position on the screen and how to find the corresponding memory location. Refer to the Device Data Sheet for the 68A45 for reading the internal registers. First, read the high and low bytes of the LIGHT PEN ADDRESS REGISTERS (R16 and R17). Then read the START ADDRESS high

THEORY OF OPERATION

\& low bytes (R12 \& R13), and subtract the latter from the former.

$$
\begin{aligned}
& \text { CHARACTER POSITION }= \\
& \quad=\text { LIGHT PEN ADDRESS }+ \text { START ADDR }
\end{aligned}
$$

For example, if you get 01ED ${ }_{H}$ for the LIGHT PEN and 0140_{H} for the START ADDRESSES, then:

$$
\text { Character position = } \begin{array}{r}
01 E D_{\mathrm{H}} \\
-0140_{\mathrm{H}} \\
0 \mathrm{AD}_{\mathrm{H}}
\end{array}
$$

$0 A D_{H}$ (173 decimal) is the character position. A correction factor needs to be applied and we will discuss it later. Since the CRT-C is programmed for 80 characters per row, dividing the character position by 80 , the quotient and remainder will tell us the row and the character number within that row where the light pen hit occurred.

Example: $\quad \frac{\mathrm{OAD}_{\mathrm{H}}}{50_{\mathrm{H}}} \quad \frac{173}{80}$

$$
\begin{aligned}
& 02_{\mathrm{H}}=\text { QUOTIENT }=2 \\
& 0 D_{\mathrm{H}}=\text { REMAINDER }=13
\end{aligned}
$$

This means the light pen hit occurred on row 2 (3rd row) and character number 13 decimal ($0 \mathrm{D}_{\mathrm{H}}$, 14 th character).

Now, by reading the light pen port, one can get the scan line number ($D_{4}-D_{7}$). Let us assume that the value is 6 . Now all there is left is to find the corresponding memory location.

THEORY OF OPERATION

Recall that the 16-bit memory value for VRAM is organized as follows:

$$
\begin{aligned}
\text { In this example, CHAR \# } & =0 \mathrm{D}_{\mathrm{H}} \\
\text { SCAN LINE \# } & =06_{\mathrm{H}} \\
\text { ROW \# } & =02_{\mathrm{H}}
\end{aligned}
$$

This translates into memory location
$130 \mathrm{D}_{\mathrm{H}}$
Within the byte addressed by $130 \mathrm{D}_{\mathrm{H}}$ the pixel position can be obtained byreading the light pen port bits 0-2.

The above computation assumed that no correction was involved. Recall that we mentioned earlier that a correction is needed to be done on the number we get by subtracting START ADDR from LIGHT PEN ADDR. This is due to the fact that a definite amount of delay is involved in the monitor, light pen, and video circuitry; which is approximately 2 to 5 character times. Therefore, we need to find out for a given system what this correction factor is and then subtract this number from the calculated value. Proceed with the computation of the memory address only after you make this correction. (For example, we might have gotten the character position value as $0 \mathrm{~B} 2_{H}$ and apply a correction of 5 . Then:

$$
0 B 2_{H}-05_{H}=0 A D_{H}
$$

PROGRAMMING DATA

Port Addresses

The information in this section concerns the video logic circuit board only and is for the experienced programmer. Programming information for the entire system is contained in "Programming Data" toward the end of this Manual.

The following chart lists the port addresses for devices that are located on the video logic circuit board. A more complete list can be found in the "Programming Data" section in the rear of this Manual.

Device Name	Port Address	
6845 CRT-C	DD	Register R0-R17
-6845 CRT-C	DC	Address register
Video 68A21	DB	Control port B
-Video 68A21	DA	Address latch
-Video68A21	D9	Control port A
-Video 68A21	D8	I/O port

PROGRAMMING DATA

Modifying the Video Control Register

NOTE: It is assumed that the CRT-C (68A45) and the CRT I/O control port (68A21) have been correctly initialized.

The I/O port address for this control port is D8 hex.
The upper four bits (D7 - D4) control the CPU access of video memory (VRAM). The lower four bits (D3 - D0) have nothing to do with VRAM access, but instead control what is displayed on the screen. That is, they control the data coming out of the VRAM that is applied to the pixel control logic. It should be emphasized that the most significant nibble and least significant nibble of the control port D8 (hex) have no mutual interaction; control of CPU access of VRAM is independent of control of video display.

All bits are active low; zero " 0 " is TRUE and one " 1 " is FALSE.

PROGRAMMING DATA

The memory map of the three planes is as follows. Addresses are in hex.

Green: 0E0000 -- OEFFFF $=64 \mathrm{~K}$
Red: 0 D0000 - - ODFFFF $=64 \mathrm{~K}$
Blue: $\quad 000000--\quad$ OCFFFF $=64 \mathrm{~K}$

D0 0- Enables red plane
1- Turns off red plane

D2 0- Enables blue plane
1 - Turns off blue plane

D3 0 -Enabled planes appear bright
1 - Data from VRAM are displayed

$0-$ Enables green plane
1 - Turns off green plane

CPU ACCESS CONTROL
(D7-D4)

VIDEO DISPLAY CONTROL (D3-D0)

D7 0- VRAM is ENABLED. This is the normal operating mode.
1- VRAM is TURNED OFF. The VRAM cannot be accensed at all when turned off.

PROGRAMMING DATA

The next three bits control "simultaneous write" capability.
D6 0 - When data is written into any color (R, G, or B VRAM), the same data is also written into blue VRAM.
1 - Data can be written into blue VRAM only if the blue plane is accessed.

D5 \& D4 -Similarly controls the green and red VRAM.

Port D8 Video Display Control Bits (D3-D0)

The following chart shows how the video display control bits (D3-D0) of port D8 can control the screen display.

D3	D2	D1	D0		
	$\overline{E N}$	$\overline{E N}$	$\overline{E N}$		
$\overline{\text { FLASH }}$	$\overline{\text { BLU }}$	$\overline{\text { GRN }}$	$\overline{\text { RED }}$		
0	0	0	0	-	The screen appears white no matter what VRAM contains.
0	0	0	1	-	The screen appears cyan no matter what VRAM contains.
0	0	1	0	-	The screen appears magenta no matter what VRAM contains.
0	0	1	1	-	The screen appears blue no matter what VRAM contains.
0	1	0	0	-	The screen appears yellow no matter what VRAM contains.
0	1	0	1	-	The screen appears green no matter what VRAM contains.
0	1	1	0	-	The screen appears red no matter what VRAM contains.

PROGRAMMING DATA

0	1	1	1		The screen is blanked (black).
1	0	0	0		All planes are enabled. VRAM data appears.
1	0	0	1		Blue and green planes are enabled. VRAM data appears.
1	0	1	0	-	Blue and red planes are enabled. VRAM data appears.
1	0	1	1	-	Blue plane is enabled. VRAM data appears.
1	1	0	0	-	Green and red planes are enabled. VRAM data appears.
1	1	0	1	-	Green plane is enabled. VRAM data appears.
1	1	1	0	-	Red plane is enabled. VRAM data appears.
1	1	1	1	-	The screen is blanked.

PROGRAMMING DATA

The following are examples of how the screen can be controlled by data bits D3-D0.

Example 1:
D3 D2 D1 D0
$\overline{E N} \overline{E N} \overline{E N}$
$\overline{F L A S H} \overline{B L U} \overline{G R N} \overline{R E D}$
$01001-\mathrm{D} 3$ is 0 , so the flash bit is turned on and VRAM data is masked. Those planes enabled will appear.
D0 \& D2 = 1 so the red and blue planes are turned off. D1 $=0$ so the green plane is enabled and the screen is green.

Example 2:
D3 D2 D1 D0
$\begin{array}{llll} & \overline{E N} & \overline{E N} & \overline{E N} \\ \overline{\text { FLASH }} & \overline{\text { BLU }} & \overline{\text { GRN }} & \overline{\text { RED }}\end{array}$
$10010-\mathrm{D} 3$ is 1 , so the flash bit is turned off and the VRAM data will appear on the screen.
$\mathrm{D} 2 \& \mathrm{D} 0=0$, so the blue and red planes are turned on. D1 $=1$, so the green plane is turned off.

PROGRAMMING DATA

Actual VRAM data will appear on the screen with the green plane disabled. "Green plane disabled" means that there will be no green pixel turned on. The actual data contained in the green plane's VRAM (0E0000-0EFFFF) is unaffected.

The normal operating mode is as follows. All the planes are enabled and the flash bit is turned off.

D3	D2	D1	D0
	$\overline{E N}$	$\overline{\text { EN }}$	$\overline{\text { EN }}$
$\overline{\text { FLASH }}$	$\overline{\text { BLU }}$	GRN	$\overline{\text { RED }}$
1	0	0	0

Port D8 CPU Access Control Bits (D7-D4)

Bit D7 is the VRAM ENABLE bit. It is like a master switch. When D7 = 1: VRAM is turned off; D6-D4 have no effect on VRAM access; and the CPU will not be able to read from or write to any plane, red, green, or blue.

When $\mathrm{D} 7=0$, video RAM is enabled. This is the normal operating mode. Bits D6-D4 control simultaneous write capability. Obviously, the processor can read only one plane at a time, so these bits control only write accesses to VRAM and have no effect on read cycles.

When D6 $=0$, it enables simultaneous write to blue VRAM when any color VRAM is written into. If the CPU writes to red VRAM or green VRAM (or blue VRAM), blue VRAM is also written into. Note that D6 has no control over other colors. When D6 $=1$, this feature is turned off for blue VRAM.

PROGRAMMING DATA

In a similar manner, D5 controls green and D4 controls red VRAM.

Example 1:

D7	D6	D5	D4
$\frac{\overline{\text { VRAM }}}{\overline{\text { ENABLE }}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{WR}}$	$\overline{\overline{W R}}$
GRN	$\overline{\text { RED }}$		

$0 \quad 1 \quad 0 \quad 0 \quad-\quad D 7=0$, so VRAM is enabled.
D6 = 1, so
WRITE BLU is off.
D5 \& D4 = 0, so
WRITE GRN and
WRITE RED are
on.
Suppose that the CPU wants to write 5D (hex) to location 0E68C0 (hex). The CPU, while trying to write to one plane (green), will simultaneously modify two corresponding memory locations in two color planes (red and green).

1. Location 0E68C0 is in the green VRAM. Therefore, no matter what bits D6-D4 are, green VRAM location $0 E 68 \mathrm{C} 0$ will be modified to 5D.
2. $\mathrm{D} 6=1$. Therefore, the blue VRAM is not affected.
3. $\quad \mathrm{D} 5=0$. The CPU is writing to the green VRAM and so its WRITE GREEN bit has no effect.
4. $\mathrm{D} 4=0$. The $\overline{\text { WRITE RED }}$ bit has been turned on. Therefore, even though the processor is writing to only the green plane, red is also written into. The red plane occupies the address range 0D0000 - 0DFFFF, so data 5D will be written into location 0D68C0 also.

Example 2:

Assume that all three planes of VRAM have been cleared (00). Then suppose we want to write OFF (hex) (a solid line __) on the screen to location 0000 in magenta (red and blue).

To do this:

1. Make sure that $D 7$ of port $D 8=0$. This enables VRAM. (This is the default status.)
2. Enable one of the desired plane's write bit, say red. Then D6 = 1, D5 = 1, and D4 = 0 .
3. Write to the corresponding location in the other (blue) plane, since blue is in the "C page." Write FF (hex) to location 0C0000 (hex).

The above three steps produce the desired results, but a slightly better scheme avoids the work of keeping track of colors. That is to turn on the bits of the planes we want. So, to do this, perform the second and third steps as follows:
2. Enable the desired plane's write bits. $\mathrm{D} 6=0, \mathrm{D} 5=1$, $\mathrm{D} 4=0$.
3. Write FF (hex) to either location 0C0000 (hex) or location 0D0000 (hex).

For alphanumeric applications, like terminal emulation, etc., where the main emphasis would be writing characters in white, the mode would be D7 = 0, D6 = 0, D5 = 0, D4 = 0 .

PROGRAMMING DATA

Typically, all three planes would be displayed. So the I/O port would read:

D8	0	0	0	0	1	0	0	0

port D8 (hex) $==>08$ (hex) --- alphanumeric mode.
For some graphic applications, where you do not want to write to more than one plane at a time, the value would be
$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & ==>78 \text { (hex.) }\end{array}$
port D8 (hex) $==>78$ (hex) ---- graphic mode .
These are examples only and are not intended to identify two different modes, graphic and alphanumeric.

Modifying the CRT-C Register

The CRT-C (CRT Controller) has an address register AR [port address DC (hex)] and registers R0-R17 [port address DD (hex)].

The Address register is a pointer register. It points to one of the 18 registers R0-R17. For example, if you want to access register R12, first write OC (hex, 12 decimal) into port DC (hex), and then access port DD (hex).

The start address register is 14 bits wide. R12 is the high byte of this register (bits D7 and D6 -- don't care), and R13 is the low byte. R12 and R13 are read/write registers.

Example: Read the low byte of the start address register.

MOV	AL, 00 DH
OUT	ODCH, AL
IN	$\mathrm{AL}, \mathrm{ODDH}$

In the mapping scheme used in the $\mathrm{Z}-100$ video, an address latch has to be initialized correctly to correspond to the CRTC's start address register. This address latch is at port DA (hex). In order for the mapping scheme to work, the least significant four bits of the start address register must be zero and bits D4-D11 should match the contents of the address latch.

PROGRAMMING DATA

Under normal operating conditions, this will be the case. When in doubt, you should initialize the latch to meet these conditions.

Example:

MOV	AL, 0OCH	$;$	LOAD
OUT	ODCH, AL	$;$	START ADDRESS
IN	AL, ODDH	$;$	HIGH BYTE
MOV	AH, AL	$;$	IN AH
MOV	AL, OODH	$;$	LOAD
OUT	ODCH, AL	$;$	LOW BYTE
IN	AL, ODDH	$;$	IN AL
MOV	CL, 4	$;$	SHIFT COUNT
SHR	AX.CL	$;$	AL NOW CONTAINS LATCH VALUE
OUT	ODAH, AL	$;$	INITIALIZE THE LATCH

How to Turn Pixels On and Off

Refer to the "Theory of Operation" on Page 4.5 for a detailed description of how the video section works.

The most significant bit (MSB) of any given byte will be seen on the screen as the left-most pixel and the least significant (LSB) as the right-most pixel. In the following example, 1 's indicate turned-on pixels.
$\begin{array}{llllllllll}\text { Example: } & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0<==\text { SCREEN } \\ & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & <==\text { VRAM }\end{array}$

Since it is straightforward to define the location of a pixel within a given byte, the problem to be solved is to locate the byte in the video memory.

PROGRAMMING DATA

The screen is organized as 640 (decimal) pixels [or 80 (decimal) bytes] horizontally across the screen. To the CPU (or system logical address space), the top left-most byte is always at 0000. (These definitions apply to all planes.) The byte addresses increase from left to right on any given scan line. The line address increases from top to bottom in a given frame. The least significant seven bits define the byte position in a given line, with 00 being the left-most. The most significant nine bits define the line address, with 000 being the top-most line.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1
(The following values are in hex.)

	Byte 0	Byte 1	Byte 2	-----	Byte 4F
LN 0	0000	0001	0002	-----	004F
LN 1	0080	0081	0082	-----	00CF
LN 2	0100	0101	0102	-----	014F
LN 3	0180				
LN 4	0200				
LN 5	0280				
LN 6	0300				
LN 7	0380				
LN 8	0400				
LN 9	0480				
LN A	0500				
LN B	0580				
LN C	0600				
LN D	0680				
LN E	0700				
LN F	0780				
LN 10	0800	0801	0802	----	084F
LN 11	0880	0881	0882	-----	08CF

PROGRAMMING DATA

At the right-hand side of the screen, past the 80th location, there are "holes" in the logical address space. [See Pictorial 4-2, fold-out from Page 4.2.] You must not attempt to use these locations, especially while 32 K RAMs are used. For example: never try to write to location 0E0150 (hex) - green plane, line 2, byte 50 (hex).

Depending on whether the CRT-C is programmed for nine scan lines or 16 scan lines per character row, there will or will not be "holes" for entire lines in the CPU's logical address space. - Holes refer to locations that do not appear. The actual screen will be continuous. For example, when the CRTC is programmed for 9 scan lines, line 10 (hex) will appear immediately below line 8 (hex).

For terminal emulation applications, where 25 rows of characters need to be displayed, nine scan lines per row are programmed. This is because hardware scrolling is easily done by changing the start address register in the CRT-C, and of course changing the address latch accordingly. On the other hand, where a lot of address computations are involved in some graphics applications, it may be advantageous to disregard the convenience of scrolling and instead choose the continuity in the line numbers (without "holes").

PROGRAMMING DATA

Example 1:

The CRT-C has been programmed for nine scan lines per character row, the CPU writes F0 (hex) to location 0C693F (hex), and OC (hex) points to the blue plane.

Problem: Figure out the location of 693F (hex) and what is displayed there.

Split 693F (hex) into 9 and 7 bits:
693F (hex)

$$
\begin{array}{lllrl}
==> & 0110 & 1001 & 0011 & 1111 \\
==> & 0 & 1101 & 0010 & 011
\end{array} 11111
$$

3F (hex) denotes the position of the byte across the screen from the left, which is the X coordinate. Therefore, the 693F (hex) location will correspond to the 64th (decimal) byte from the left. In Y coordinate 0D2 (hex), OD refers to the character row number and 2 refers to the scan line number within the character row. Since the CRT-C has been programmed for nine lines per row of characters, the location will correspond to $13 \times 9+2=119$ (decimal).

Data byte F0 (hex) (1 $1 \begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$, turning on the left four pixels) will appear on the 120th line from the top, and 64 bytes from the left, assuming that the proper plane has been enabled.

Example 2:

Problem: Access the screen at a location 37 bytes from the left and on the 126th line from the top.

37 bytes from the left translates into byte address 24 (hex). The 126th line means that the intended byte appears on (126/ 9) the fourteenth row and the ninth line in that row. So, the address of the line is 0D8 (hex). Remember that the top row is row 0 .

PROGRAMMING DATA

Therefore, the VRAM location is

$$
0 D 8 \text { (hex) }+24 \text { (hex) }==>6 \mathrm{C} 24 \text { (hex) }
$$

$$
9 \text { bits } \quad 7 \text { bits }
$$

Example 3:

Problem: Where on the screen is location 35E3 (hex)?
Divide 35E3 (hex) into its X and Y coordinates.

$$
35 \mathrm{E} 3 \text { (hex) }==>06 \mathrm{~B}(\text { hex })+63 \text { (hex) }
$$

The X coordinate 63 (hex) falls into the "hole" region of 50 (hex) - 7F (hex). This is prohibited and such an operation should not be attempted.

Example 4:

Problem: Where on the screen is location 1727 (hex)?

$$
1727(\text { hex })==>0_{Y} 2 E(\text { hex })+27 \text { (hex) }
$$

The X coordinate is the twenty-eighth byte, and the Y coordinate is the third row and the fifteenth line in that row. Since the CRT-C will display only 9 scan lines, line E (hex), the 15 th line will not appear on the screen. If you have a use for these VRAM locations, with scan line addresses 9 (hex) through F (hex), access to these locations is permitted. Remember that only the X coordinate cannot be in the range 50 (hex) through 7F (hex).

When the CRT-C is programmed for 16 scan lines, similar calculations can be made, but now there are no non-displayable VRAM locations ("holes" for scan lines 9 through F). Still, the X coordinate restriction does apply.

PROGRAMMING DATA

Clearing the Screen

The "clear screen" feature allows you to initialize all the viewable VRAM locations to either 00 (hex) or FF (hex).

The CRT I/O control port (68A21) has two control ports, A and B. Bit 3 of each port serves a special purpose. Bit 3 of control port A, address D9 (hex), is the CLRSCRN bit and it is active low. (It is 1 by default.) Bit 3 of control port B , address DB (hex), is the SET bit.

When CLRSCRN is inactive (1), the SET bit has no effect and normal video operations take place. When CLRSCRN is programmed to " 0 ", the SET bit decides whether the VRAM is initialized to 00 (hex) if SET $=0$, or to FF (hex) if SET $=1$.

Be careful when you use the CLRSCRN feature. This bit operates independent of all other bits discussed so far. It operates whether or not VRAM is enabled, whether or not multiple write capability is invoked, and whether or not FLASH or any planes are enabled. Activating clear screen can wipe out all red, green, and blue VRAM locations.

Ports D9 (hex) and DB (hex), control ports A and B, are readable. Therefore, whenever you want to modify the $\overline{\text { CLRSCRN }}$ or SET bits, you should first read those ports, modify bit 3, and then write it back.

Notice that even though these bits have complete control over VRAM contents, they still do not affect the video display control bits. For example, assume all three planes were disabled to start with. Now, activating the CLRSCRN feature with SET = 1 will not make the screen white. The VRAM locations would have been changed to FF (hex).

The CLRSCRN feature was included because CPU accesses of VRAM are inherently slow (because of arbitration between the CRT-C and the CPU for VRAM access, and the CRT-C has higher priority), and to clear the screen would mean writing to about 20K bytes of memory. The CLRSCRN feature will clear the screen in 1 frame time, or 16.7 millisecnds for 60 Hz operation.

PROGRAMMING DATA

Example 1:

Clear the screen.

1. Read port D8 (hex) and save the status.
2. Initialize CRT control port D8 (hex) to OF (hex). This will instantaneously blank the screen, since all three planes are disabled.
3. Write a zero into bit 3 of port DB (hex). This will make $\mathrm{SET}=0$. (Recall that you have to do the READ, modify, and WRITE sequence.)

IN	AL, ODBH
AND	AL, OF7H
OUT	ODBH, AL

4. Write a zero into bit 3 of port D9 (hex). This will activate CLRSCRN.
5. Wait for 16.7 milliseconds (in the 50 Hz mode, this wait is 20 milliseconds). Do it in either of two ways:
A. Use the timer integrated circuit in your system.
B. Use the vertical sync pulse. If you have seen two consecutive VSYNC pluses, you know that 16.7 mS have elapsed.
6. Turn off the $\overline{C L R S C R N}$ bit. (Write a "1" to bit 3, port D9 (hex).
7. Restore the status to video control port D8 (hex).

PROGRAMMING DATA

Example 2:

Set the screen.

1. Read port D8 (hex) and save the status.
2. Turn on the FLASH bit and those planes which were originally enabled.

$$
\begin{array}{ll}
\text { IN } & \text { AL, OD8H } \\
\text { AND } & \text { AL, OF7H } \\
\text { OUT } & \text { OD8H, AL }
\end{array}
$$

This will instantaneously set the color of the screen to the planes enabled.
3. Write a " 1 " into bit 3 of port DB (hex). This will make SET = " 1 ".
4. Write a "0" into bit 3 of port D9 (hex). This will make $\overline{\text { CLRSCRN }}=0$.
5. Wait for 16.7 mS (or 20 mS). (See the above example.)
6. Turn off the clear screen bit.
7. Restore the original status to video control port D8 (hex).

Remember: The clear screen feature wipes out all displayable locations, plus some more, on all three VRAM banks.

CIRCUIT DESCRIPTION

Video Logic Circuit Board

Video Processing Circuits

Cathode Ray Tube Controller (CRT-C)

The CRT-C, U330, fetches the characters to be displayed and provides horizontal and vertical timing. It also keeps track of the affected character if the light-pen circuits are used.

Briefly, here's what each line does. See the 6845 IC data sheet for more information.
$\overline{\text { POC }}$ Power-on clear, from the S-100 bus. Sets all registers to their initial conditions on power-up or reset.

6845CS Chip-selects the CRT-C for accessing the internal registers.

ECLK Latches the data into or out from the registers on its trailing edge.

BAO Helps select a specific register inside the CRT-C.
OUT When low, writes data into the selected register. Otherwise, reads data from it.

DIO0-DIO7 Data bus used by the CPU to access the CRTC registers.

CLK Provides character-clock timing to the CRT-C.
HSYNC Horizontal sync pulse.
VSYNC Vertical sync pulse.
CURSOR Provides an indication where the next character will be printed.

DISEN Disables the display during horizontal and vertical retrace.

CIRCUIT DESCRIPTION

MA0-MA11 Memory address lines. Point to the current character line, and the character in that line.

RA0-RA3 Row address lines. Points to the current scan line in the current character line.

Writing to a CRT-C Register

To select a specific CRT-C register (R0-R17), the CPU must first program the address register (AR). For example, to write to R12, the CPU outputs $0 C H$ to port $0 D C H$. This places the number 12 into AR. The CPU then outputs the data it wants to write to port ODDH, which is loaded into register 12. Here's how it happens.

The CPU outputs the number $12(0 \mathrm{CH})$ to port 0 DCH . This is coupled through U338 to the data lines of the CRT-C. At this time, 6845CS at VIOSEL (U369) asserts the chip-select line at pin 25 of the CRT-C. Since the port address is ODCH, line BAO $=0$; thus accessing the AR.

When ECLK goes low, the data (0 OCH) on the bus lines is loaded into the address register. AR now points to register 12.

The CPU now outputs the byte it wants to write into port ODDH and line 6845CS is again asserted. Since the port address is $0 D D H$, line BAO = 1 , telling the CRT-C to route the data to the register pointed to by AR. When ECLK goes low, this data is loaded into register 12.

Reading Data From The CRT-C

The procedure is the same as writing data, except that U331 is selected instead of U338. This is done by $\overline{\text { DBIN }}$ from the S100 bus and by $\overline{4521 C S}$ from U366 pin 14.

CIRCUIT DESCRIPTION

How the CRT-C Addresses RAM

As mentioned before, the CRT-C is normally programmed to emulate the H 19 video terminal. That is, the display will contain 25 lines, 80 characters per line, and nine scan lines (rows) per character line.

MA0-MA11 points to the character location within a character line, and also points to the current character line. They do this by incrementing the base address by ten after every ten scan lines. RA0-RA3 counts the number of scan lines. After one scan line is complete (MA0-MA11 count to 79), RA0-RA3 reset to 0 and MAO-MA11 reset to their base address. The count begins again. This procedure continues until nine scan lines are processed. RA0-RA3 again returns to zero, but MAOMA11 increment their base address by ten to point to the next character line.

For each address, a byte is read from video RAM (VRAM) and shifted serially out to the video amplifier with the horizontal and vertical sync pulses. The scan rate is such that each address row appears beneath the previous one so that the serial dots form characters on the screen. Once the last character row is processed, both RA0-RA3 and MA0-MA11 reset to zero, vertical retrace takes place, and the process repeats.

Incidentally, at vertical retrace a sync pulse is sent through U366 (lower left on the schematic) to interrupt the CPU. This permits the CPU to access the CRT-C registers (for example, to scroll the display) without interferring with the display.

The address lines reach memory by passing through a set of multiplexers. RA0-RA3 connects to multiplexer U357 while MAO-MA11 connects to U363, U358, and U359. These ICs allow coupling the CRT-C address lines to VRAM, or the CPU address lines to VRAM.

CIRCUIT DESCRIPTION

When line VIDRAMSEL is low, the multiplexers pass the CRT-C address bus to the VRAM address bus. RA0-RA11 is the lower 4 bits, DAO-DA3; and MA0-MA11 are bits DA4DA15. This causes the address line to increment by 16 for every scanned character. See Pictorial 4-10. This shows the on-screen character location and its relative address (decimal) as seen by the CRT-C.

	1st Char Column	2 nd Char Column	3 rd Char Column	80th Char Column
lst Char, lst Pixel Row	0	16	32.	1264
lst Char, 2nd Pixel Row	1	17	33.	1265
lst Char, 3rd Pixel Row	2	18	34.	1266
lst Char, 4th Pixel Row	3	19	35.	1267
lst Char, 5th Pixel Row	4	20	36.	1268
lst Char, 6th Pixel Row	5	21	37.	1269
lst Char, 7th Pixel Row	6	22	38.	1270
Ist Char, 8th Pixel Row	7	23	39.	1271
lst Char, 9th Pixel Row	8	24	40.	1272
2ndChar, ist Pixel Row	1280	1296		2544
	1281	1297		2545
	1282	1298		2546
	1288	1304		2552
	2560			. 3824
251h Char, Ist Pixel Row,	30720	30736		31984
25th Char, 9th Pixel Row 30	30728	30744		31992

Pictorial 4-10
Relative Memory Locations

CIRCUIT DESCRIPTION

Lines DA0-DA15 connect to address multiplexer U360 and U373. This circuit splits the address for RAS and CAS timing. RAS timing occurs when ADMUX is high, coupling the following lines to the outputs:

```
VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0
    --- --- --- --- --- --- --- ---
DA9 DA8 DA7 DA6 DA5 DA4 DA1 DA2
```

CAS timing occurs when ADMUX goes low, causing:

The address lines at VA0 and VA1 are arranged so the RAM ICs can get refreshed during a normal CRT-C scan in both the non-interlace and interlace modes. This results in a reduction of components in the video circuits.

Jumper J307 permits the use of 64 K RAMs or 32 K RAMs. To use 64K RAMs, connect the jumper from DA15 to U373-11. To use 32 K RAMs located in the upper half of the 64 K address space, remove the jumper. To use 32 K RAMs in the lower half of the 64 K address space, connect the jumper from U37311 to ground. Note that if the computer uses 32K RAMs, they all must be located in either the upper 32 K of each 64 K bank or all in the lower 32K--they can't be mixed. See the H/Z-100 Memory Map (Pictorial 4-11) located on Page 4.55.

CIRCUIT DESCRIPTION

Converting RAM Data to Video

There are two sets of data lines at the video memory. One is an 8 -bit bus, BD0-BD7, used by the CPU to write to RAM; and three 8 -bit output buses, one for each color.

The output buses go to the CPU through U339, U310, and U316. Only one of these ICs will be selected to place the data on BDIO-BDI7. This, in turn couples through U223 to the CPU. This will be covered in more detail later.

The three output buses also couple to the video processing circuits through U332, U302, and U311. Here's how the data is processed.

When the CRT-C has control of RAM (which is most of the time, since it has priority), the VRAM is in the read mode. This is due to a logic zero on VIDRAMSEL (U377 pin 4) and CLRSCRN (U366 pin 3). When the addressed data settles, VIDSTRB from U376 pin 17 asserts to latch and RGB data into U332, U302, and U311. (Note: If this is a minimum system - green only - U332 and U311 outputs will remain a steady state.)

Next, the load shift register line from U320 pin 6 goes low to latch the RGB data into the parallel-to-serial converters, U325, U301, and U303. This line pulses at the character clock rate.

The dot clock at pin 6 of these ICs then shifts the data out through pin 13. This takes place at eight times the character clock rate, or 14.112 MHz , which is the rate of the dot clock. While the video information is being shifted out, VIDSTRB is loading the next byte into D latches. When the last dot is shifted out of the parallel-in/serial-out converter, the bytes in the D latches are loaded in and the cycle repeats.

The three serial dot lines connect to RIN, GIN, and BIN of U337, the VIDATTR PAL. Other inputs to U337 include the $\overline{\text { FLASH }}$ line and three enable lines at pins 1,2 , and 3.

CIRCUIT DESCRIPTION

When they are asserted, the enable lines from the PIA (U345) gate their respective dot video color to the outputs at pins 14,15 , and 16.

When the FLASH line - also from the PIA - is asserted, the output lines selected by the enable lines will go high, saturating that color onto the screen and masking any video data on that line.

For example, if ENBL-G were the only asserted enable line, then dot video would only be present on GOUT. Asserting the FLASH line would cause GOUT to go to logic one, causing the screen to appear solid green.

Two other lines enter U337; the display enable and the cursor signal. The display enable (DISEN) goes low to blank the video data during horizontal and vertical retrace. It comes from pin 18 of the CRT-C and is delayed by two character clocks through the hex D flip-flop. This delay is used to match the timing of DISEN to the video signal delayed by the parallel-in/ serial-out converters. If DISEN wasn't delayed, retrace blanking will occur two clock cycles early, blanking the last two character positions.

The cursor signal enters pin 6 to generate a cursor at ROUT, GOUT, and BOUT. It comes from pin 19 of the CRT-C and goes through the hex D flip-flop to be delayed by two character clocks. This two-character delay places the cursor to the right of the last displayed character.

The horizontal and vertical sync pulses also come from the CRT-C and are clocked through the D flip-flop. These signals, however, bypass U337 and connect to U329, another hex D flip-flop. The RGB lines enter this flip-flop at pins 11, 13, and 14. All five signals are clocked out by the dot clock entering at pin 9 . The purpose of this flip-flop is to correct for any propagation delays in the various signal paths.

CIRCUIT DESCRIPTION

Video Output

Color Output

The 3 RGB lines from U329 connect to U307. This buffer provides red, green, and blue video pulses to P303. Logic 1 equals color on; 0 is black level.

The horizontal and vertical sync pulses connect to U320, pins 12 and 9. These signals then pass through the drivers at U322 to P303. P303 connects through a mating cable to an RGB color monitor. Jumpers J302 and J304 allow selecting the polarity of the sync signals, while J303 allows sending composite sync to U320 pin 9 by connecting it to U355 pin 11.

Monochrome Output

RDOTA, GDOTA, and BDOTA also connect to U323, a 3-to-8line demultiplexer. J306 and J305 connect one color to each input at pins 1,2 , and 3 . If this is a minimum system (green only), pins 1 and 2 are jumpered to pin 3 .

U323 decodes the three inputs to assert only one output at Q0-Q7. This signal connects to U309 and is clocked through by the dot clock. The mnemonics on the output lines indicate the color represented by the combination of the three inputs. These outputs couple through the inverters to the resistive weighting network.

This network converts the associated line to a specific voltage level before applying it to the emitter followers at Q302 and Q301. This network forms a monochrome gray scale by controlling the current through the emitter followers.

For example, if RDOTA, GDOTA, and BDOTA were all asserted, U309 pin 19 would go high, driving U308 pin 8 low. This gives the highest resistance in the lower part of the voltage divider, causing the most positive voltage at the output and giving maximum brightness.

CIRCUIT DESCRIPTION

If none of the RGB lines were asserted U309 pin 2 would go high to place U322 pin 6 at logic zero. This lowers Q301's emitter voltage to the black level.

Composite sync from U355 pin 11 provides horizontal and vertical sync pulses at the blacker-than-black level.

The composite video output of P301 connects to the video input of the internal or external monochrome monitor.

CIRCUIT DESCRIPTION

CPU-Video Communications

Overview

The CPU can communicate with the video board through several I/O ports, or by read/writing the video RAM. It uses the I/O ports to access the CRT-C, the PIA, and the light pen circuits. It can read/write the video RAM to set up the character font or draw high-density graphics.

Video I/O Circuits

Video I/O addresses are decoded by VIOSEL, U369, a 256 $\times 4$ PROM. This IC is selected by the appropriate address on BAO-BA7 and the $\overline{\mathrm{O}}$ line from the E-clock logic. The outputs are:

6845CS Selects the CRT-C programming as described earlier.

CRTIOCS (A) Chip-selects the PIA at U345, and (B) provides one input to the OR gate, U372/U366. The other input to this OR gate is $\overline{6845 \mathrm{CS}}$; the output is $\overline{4521 \mathrm{CS}}$. This line chip-selects U331 when the CPU is reading data from the CRT-C or from the PIA.

LPNCS Chip-selects the light-pen counter circuits at U315 if the CPU is processing a light-pen interrupt request. See the discussion on the light-pen circuits.

VIDBSEL Asserts when pins 12, 13, or 10 asserts. This line goes to U372 pin 13 and is NANDed with $\overline{\text { DBIN }}$ at U366 pin 13. The result is RDBFRENBL at P304 pin 57; this enables the read buffer, U223, when one of the VIOSEL lines is asserted.

CIRCUIT DESCRIPTION

Another video I/O circuit is the PIA at U345. This is used for address decoding, controlling the display, and performing some VRAM operations.

The CPU selects the PIA at ECLK time (pin 25) by asserting $\overline{\text { CRTIOCS }}$ at pin 23. BAO and BA1 select the register to be accessed while OUT determines if data is to be read from or written to that register. For this PIA, all I/O lines are programmed to be outputs. Here's what they do:
$\overline{\text { ENBL-R }},-\overline{\mathrm{G}},-\overline{\mathrm{B}}, \& \overline{\mathrm{FLASH}}$ Enables the selected video line without affecting RAM. FLASH causes the selected line to appear as a solid color. See "Converting RAM Data to Video" (Page 4.53) for more information.
$\overline{\text { WRT-R, }} \overline{\text { WRT-G }}, \overline{\text { WRT-B }}$ Provides a simultaneous write function. When the CPU writes to one color of VRAM, either or both of the other colors may be written into by activating (0) the appropriate line(s) [WRT-R, $\overline{\text { WRT-G, }}$ WRT-B].

CRTRAM ENBL Chip-selects VRAMSEL, U371 pin 4, which selects the red, green, or blue banks when the CRT reads the VRAM.

LA8-LA15 Goes to the memory mapping module to decode the selected video memory location.

CLRSCRN Goes to the video memory circuits to provide a quick means to clear the screen.

CIRCUIT DESCRIPTION

Memory Select Circuits

The memory select circuits are centered around U371, VRAMSEL, a 256×4 PROM. This IC is used when the CPU wants to access the red, green, or blue memory banks. VRAMSEL is selected when CRTRAM ENABLE is asserted at the PIA. Also, MEMR or $\overline{W O}$ is gated through U377 (near VRAMSEL.) for further chip-selecting. The OUT line at U377 pin 2 ensures that U371 will not activate on an OUT port operation.

The outputs assert depending on what location in the video memory map is selected. (See Pictorial 4-11.)

$$
\begin{aligned}
& \text { RSEL }=0 \mathrm{D} 0000 \mathrm{H}-0 \mathrm{DFFFFH} \\
& \mathrm{GSEL}=0 \mathrm{E} 0000 \mathrm{H}-0 \mathrm{EFFFFH} \\
& \mathrm{BSEL}=0 \mathrm{C} 0000 \mathrm{H}-0 \mathrm{CFFFFH}
\end{aligned}
$$

CIRCUIT DESCRIPTION

Video logic boards can have either 32 K or 64 K parts installed. Current software, however, requires only 32K parts.

CRTRAMSEL asserts whenever pin 11, 10, or 9 asserts. This connects to U372 pin 12 in the lower left corner of the schematic. It is combined with VIDBDSEL and $\overline{\text { DBIN }}$ to assert RDBFR ENBL. This line enables U223 during a memory read operation.

CRTRAMSEL is double-inverted at U366 pin 5 to form CRTRAMSEL1 at P305 pin 61. This line asserts PHANTOM* at U194 pin 4 on MB2. If an S-100 memory card is occupying the same memory space as VRAM, PHANTOM* prevents the CPU from writing to the S-100 memory when it is accessing video RAM. This permits you to install read/write memory in the same address space as VRAM without them interferring with each other.

CRTRAMSEL also goes to U372 pin 3, VIDRAMRDY, through an inverter. If the CRT-C is busy processing a video signal, it will not let the CPU access the RAM circuits. U372 pin 2 is also high, causing VIDRAMRDY to go low. This drives RDY low at U194 pin 12, putting the CPU into a wait state. The CPU will hold CRTRAMSEL asserted until the CRT-C gives the CPU control of the video circuits.

Finally, CRTRAMSEL goes to U379 pin 11, part of the CPU/ video arbitration circuits. These circuits synchronize the video circuits to the CPU circuits and determine when the CPU can access the video RAM. See the previous paragraph and the description of the control and timing circuits.

CIRCUIT DESCRIPTION

Read Data Buffers

The CPU reads the addressed data through either U339, U310, or U316. When the CPU reads VRAM, the memory places data on the inputs of these latches. To read a particular bank, the CPU asserts $\overline{\mathrm{RSEL}}, \overline{\mathrm{GSEL}}$, or $\overline{\mathrm{BSEL}}$. For example, to read the data in the green video memory bank, the CPU addresses the desired video memory section (to be explained shortly) and asserts $\overline{\text { GSEL }}$ at U371 pin 10. This signal connects to U351 pin 9. When $\overline{\text { DBIN }}$ from the S-100 bus asserts, U351 pin 8 goes low to couple the data in U310's latches to the BDI bus. In turn, this data couples through U223 to S-100 lines DIO-DI7 before coupling to the CPU.

Memory Mapping Module

The memory mapping module consists of U370, U364, and U365. It translates the CPU address range into the address range used by the CRT-C. The CRT-C sees the VRAM in the range of $0-64 \mathrm{~K}$, while the CPU sees the memory in the range of 768 K to 960 K .

To convert the CRT address range to $0-64 \mathrm{~K}$, the CPU latches a bit pattern into LA8-LA15. The CPU then requests access of the video RAM by asserting VIDRAMSEL, the desired color bank (RSEL, BSEL, GSEL), and the appropriate address lines on the inputs of U370.

U370 decodes the address and feeds it to the adders at U364 and U365. These ICs add the decoded address to LA8-LA15 and place the result onto the B inputs of U358 and U359. The rest of the CPU address is present on the B inputs of U357 and U363.

When the CRT-C is finished accessing the display, it brings VIDRAMSEL low at U377 pin 4 (lower left corner of schematic). This couples the B inputs of the multiplexer ICs onto address lines DAO-DA15. The correct VRAM location can now be read or written.

CIRCUIT DESCRIPTION

Video RAM

Overview

The video RAMs are 32 K or $64 \mathrm{~K} \times 1$-bit dynamic RAMs. The RAMs are arranged into three banks, 64 K apart; one bank for each of the primary colors. In a minimum system, only the green bank will contain memory. The CPU can read/write RAM, while the CRT-C can only read.

CPU Write

The CPU writes to RAM through U346; it places data onto the bus and asserts WE of each chip through U374 pin 11. This comes from BMWRT and VIDRAMSEL at U355 pin 5 and U351 pin 4.

The RAS portion of the address is present on VA0-VA7.

U350 gates the RAS line through U375 pin 11, U375 pin 8, and U374 pin 8 for the selected bank.

Next, the CAS address is placed on VAO-VA7 and the CAS line asserts U375 pin 3, U375 pin 6, and U374 pin 6. Only the bank(s) previously selected by RAS will be affected.

Data present at the inputs of U346 are coupled into the appropriate memory location(s) in the video RAM.

CPU Read

When the CPU reads from RAM, it asserts $\overline{\mathrm{R}-\mathrm{SEL}}, \overline{\mathrm{G}-\mathrm{SEL}}$, or $\overline{\mathrm{B}-\mathrm{SEL}}$ to select the appropriate color bank. The RAS and CAS lines operate as before. The address data is placed on the DOUT lines of the selected banks and read by the CPU as explained previously.

CIRCUIT DESCRIPTION

CRT-C Read

The CRT-C reads all three banks at the same time; the enable lines at U337 select which banks are to be displayed as explained previously. When the CRT-C has control, VIDRAMSEL is low and couples to pins 13,5 , and 11 of U350. This forces pins 12, 6, and 8 of U350 to logic 1.

When RAS occurs, the address on VAO-VA7 is latched into all three banks. Next, CAS asserts and also addresses all three banks. The data from each bank is placed onto the appropriate bus and sent to the parallel/serial conversion circuits.

Clear Screen Function

The clear screen function allows the CPU to quickly clear the screen. Instead of directly writing to memory, which is timeconsuming, the CPU uses the fast scanning feature of the CRT-C. Here's how.

The CPU asserts the CLRSCRN line at the PIA; it also clears or sets the SET line. These lines connect to the PAL at U346; CLRSCRN disconnects the PAL from the data on its input, while SET places all ones or zeros on the output lines, depending on the logic level at pin 11. (If the level is logic one, the screen will be painted white instead of blanked.)

CLRSCRN also connects to U355 pin 4 and U351 pin 5 to force the $\overline{\mathrm{WE}}$ line low on all RAMs. During this time, the CRT-C has control of the bus. Since the CRT-C scans all memory locations, each bank will be filled with ones or zeros, depending on the level on SET. The CRT is quickly blanked or flashes white.

Page 4.64

CIRCUIT DESCRIPTION

Pictorial 4-12
Video Board Timing

CIRCUIT DESCRIPTION

Timing and Video Arbitration

Timing

Refer to the Schematic Diagram and Pictorial 4-12 as you read the following materials.

The 14.112 MHz crystal-controlled oscillator at U368 provides the basic timing for the video circuits. This signal couples through U344 pin 11 to provide dot clock and couples through U344 pin 6 for inverted dot clock. This method was used instead of series-connected inverters to ensure that the two clock signals are exactly 180-degrees out of phase.

DOTCLK drives U336 and U343; these ICs are wired as a ring counter to derive Q0-Q70 shown in the adjacent waveforms. U367, driven by DOTCLK, uses some of these outputs to generate the odd-numbered waveforms from Q05 to Q65. These signals connect to the VIDRAM PAL at U376.

U376 uses the Q signals to generate VIDSTRB, ADMUX, RAS, and CAS. VIDSTRB clocks addressed data into the latches prior to parallel-to-serial conversion as described previously. ADMUX multiplexes the 16 -bit address bus onto an 8 -bit address bus in time with RAS and CAS. ADMUX is low during RAS and high during CAS.

The CRT-C has control of the video circuits for $2 / 3$ of any timing cycle. This ensures fast display refresh while the remaining $1 / 3$ allows the CPU to rapidly update the display memory.

The CRT-C's portion of the cycle begins on the negative transition of Q0. This is indicated by the two RAS waveforms marked "CRT-C" on the Video Board Timing waveforms. Video arbitration circuits (to be explained presently) ensure that the CRT-C always has control during these two RAS cycles.

CIRCUIT DESCRIPTION

The third RAS cycle of the video timing cycle is reserved for the CPU. If the CPU doesn't attempt to read or write memory, RAS will not assert during the time marked "CPU." If the CPU does attempt to read or write memory RAS will assert and the memory access can take place. Note that during CPU RAS time, VIDSTRB (U376 pin 17) does not pulse. This prevents the addressed memory location from being latched into U332, U302, and U311; keeping unwanted noise off the display.

If the CPU attempts to access video memory during the CRTC portion of the cycle, the arbitration circuits places a logic zero on P305 pin 62. This logic zero couples to the CPUs READY line which puts the CPU into a wait state. The CPU ceases activity until the "CPU" RAS cycle begins. At this time, P305 pin 62 goes high to activate the CPU.

Obviously, the CPU processing time will slow down if it performs a lot of reading and writing to video RAM. However, the video arbitration circuits do not slow down the CPU for non-video operations (such as I/O and system memory accesses). As long as the CPU isn't accessing the video circuits, P305 pin 62 remains high and the CPU operates at full speed.

Now for a closer look at the video arbitration circuits.

Video Arbitration

The video arbitration circuits determine if the CPU is requesting access to the video RAM. If the CRT-C is not using the RAM, it gives control to the CPU. However, the CRT-C always has priority.

As mentioned previously, the CPU requests control of the VRAM by asserting RSEL, $\overline{\text { GSEL, or } \overline{\text { BSEL }} \text { at U371. This as- }}$ serts CRTRAMSEL which couples through U372 pin 3 to put the CPU into a wait state after the CPU finishes the 2nd processor cycle.

CIRCUIT DESCRIPTION

CRTRAMSEL also goes to U379 pin 11 to set up the bus arbitration circuits for a read/write request from the CPU. If the operation is a CPU write, then U379 pin 3 goes high. If the operation is a CPU read, then MEMR is clocked into U378 pin 5 when STVAL*SYNC asserts. In turn, U378 pin 5 couples the logic one to $\cup 379$ pin 2.

At this time, U361 pin 8 is latched to logic one which is coupled to U372 pin 2. U372 pin 1 is also logic one due to the asserted CRTRAMSEL line at U366 pin 4. U372 pin 3 holds the CPU in a wait state as described previously. Because of this, pins 11 and 12 of U379 remain at logic zero. The resulting logic 1 at U379 pin 13 is the CPU request signal which couples to pin 2 of U361.

When the CRT-C has completed processing the video circuits, Q15 at U361 pin 3 goes high. This latches U361 pin 6 to logic zero and, because U361 pin 9 is also zero, drives the VIDRAMSEL line at U377 pin 4 to logic one. VIDRAMSEL connects to the control inputs of the CPU/CRT-C address multiplexers to couple the CPU address lines to the video memory circuits.

If the CPU is writing memory, data from the S-100 bus is present on lines BD00-BD07. BMWRT writes this data into memory. If the CPU is reading memory, the address memory location places the data onto U339, U310, or U316; depending on the RGB select lines going into memory.

When line Q65 goes high, the logic one at U361 pin 5 is latched into U361 pin 9. This latches the data on the inputs of U339, U310, and U316 onto their outputs; if memory read. The status of the gate at the input of each octal latch will determine which latch will be coupled to the bus.

CIRCUIT DESCRIPTION

At the same time, U361 pin 8 goes low to bring VIDRAMRDY high. The CPU leaves the wait state and finishes processing the instruction. CRTRAMSEL goes high to drive U379 pin 13 low. Since VIDRAMSEL is also low, U355 pin 3 goes to logic zero to clear U361.

The CRT-C again has control of the video board.

Light Pen Circuits

The light pen strobe enters U362 pin 12 from U116 pin 9 (see the parallel port description for more detail). The $\overline{\text { DOTCLK }}$ signal toggles LTPNSTB through U362 pin 9 to U356 pin 5. Next, the clock signal at U356 pin 11 latches the LTPNSTB signal onto U356 pin 9. This positive-going signal latches the refresh address into the CRT-C's light pen register. See the CRT-C IC data sheets.

Also, the output of U356 pin 5, PENSTBD, goes to U315 pin 11. U315 is an octal latch that is loaded by the CRT-C row address iines, RA0-RA3, and the 4-bit down-counter, U324.

At the time of PENSTBD, RA0-RA3 point to the row that was active when the light pen strobe occurred; U324 points to the dot position.

As explained in the parallel port description, when LTPNSTB asserts, the parallel port sends an interrupt to the CPU. From here, it is up to the user's program to process the interrupt.

If the CPU is programmed to respond to a light-pen interrupt, it will read the data stored in the CRT-C light-pen register and the data stored U315 to find the exact pixel location. The CPU reads the CRT-C as described earlier; it reads U315 by asserting $\overline{\text { LTPNCS }}$ from the VIOSEL PROM and $\overline{\text { DBIN }}$ from the S-100 bus. From here, the CPU can compute the video memory location and access the bit in that memory location to be processed.

Use the following chart for help in identifying the source of problems. The chart lists conditions and possible causes for specific problems. If you cannot resolve the problem, refer to the warranty and service information supplied with your Computer.

You may wish to service some problems yourself. In the following chart, if a particular part is mentioned, check that part and other components that are associated with it. Remember to locate and correct the cause when components are damaged, or the problem could reoccur.

Refer to the "Circuit Board X-Ray View" for the physical location of parts on the circuit boards.

| CONDITON | POSSIBLE CAUSE |
| :--- | :--- | :--- |
| Monitor blank | 1.

 2. Not plugged in.
 Not turned on.
 3.
 Cables P304 or P305 not connected properly.
 Power supply. |
| Vertical roll | 4. \quad Jumper 301 in wrong position. |
| Horizontal tear | 1. \quad Jumper 302 in wrong position. |
| Random dots | 1. \quad Jumper 307 in wrong position. |
| Dark screen | 1. \quad Adjust R307 (Black Level control). |
| Vertical lines filling the entire usable video screen. | 1. \quad One or more Z-219-1 video RAM ICs installed backwards. |

REPLACEMENT PARTS LIST

Video Logic Circuit Board

CIRCUIT	HEATH	Description
Comp. No.	PartNo.	

Resistors

All resistors are $1 / 4$-watt, 5%, unless specified otherwise.

R301	10-1204	1000Ω control (may not be in all units)
RP301	$9-99$	1000Ω resistor pack RP302
P-128	10 k Ω resistor pack	
R303	$6-102-12$	1000Ω
RP303	$9-124$	4700Ω resistor pack
R304	$6-470-12$	47Ω
RP304	$9-124$	4700Ω resistor pack
R305	$6-102-12$	$1000 \Omega \Omega$
RP305	$9-93$	33Ω resistor pack
R306	$6-270-12$	27Ω
RP306	$9-93$	33Ω resistor pack
R307	$10-1191$	100Ω control
RP307	$9-99$	1000Ω resistor pack
R308	$6-621-12$	620Ω
R309	$6-221-12$	220Ω
R310	$6-111-12$	110Ω
R311	$6-330-12$	33Ω
R312	$6-470-12$	47Ω
R313	$6-270-12$	27Ω
R314	$6-390-12$	39Ω
R315	$6-620-12$	62Ω
R316	$6-650-12$	27Ω
R317	$6-102-12$	1000Ω
R318	$6-102-12$	1000Ω
R319	$6-103-12$	$10 \mathrm{k} \Omega$
R320	$6-103-12$	$10 \mathrm{k} \Omega$
R321	$6-102-12$	1000Ω
R322	$6-472-12$	4700Ω
R325	$6-102-12$	1000Ω

REPLACEMENT PARTS LIST

CIRCUIT	HEATH	DESCRIPTION
Comp. No.	Part No.	

Capacitors

C301-C302	$21-746$	180 pF ceramic
C303	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C304	$25-820$	$10 \mu \mathrm{~F}$ electrolytic
C305-C307	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C308	$25-820$	$10 \mu \mathrm{~F}$ electrolytic
C309-C335	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C336	$25-820$	$10 \mu \mathrm{~F}$ electrolytic
C337-C363	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C364	$25-883$	$47 \mu \mathrm{~F}$ electrolytic
C365	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C366-C368	$21-746$	$180 \mu \mathrm{~F}$ ceramic

Miscellaneous

L301	$475-15$	$1.22 \mu \mathrm{H}$ ferrite bead
L302-L304	$235-229$	35 mH coil
U368	$150-134$	14.112 MHz crystal
		oscillator

Semiconductors

See the "Semiconductor Identification Chart."

SEMICONDUCTOR IDENTIFICATION

Component Number Index

This section is divided into four parts. The "Component Number Index" relates circuit component numbers to Heath Part Numbers. The "Part Number Index" relates part numbers to manufacturers' part numbers, as well as providing lead configuration drawings for each part. The remaining two parts are "PAL Equations" and "ROM Codes" for the PALs and ROMs on the video logic circuit board.

CIRCUIT	HEATH
COMPONENT	PART
NUMBER	NUMBER
Q301	417-118
Q302	417-118
U301	443-892
U302	443-805
U303	443-892
U304	443-1106*
U305	443-1106*
U306	443-1106*
U307	443-791
U308	443-967
U309	443-805
U310	443-837
U311	443-837
U312	443-1106*
U313	443-1106*
U314	443-1106*
U315	443-863
U316	443-837
U317	443-1106*
U318	443-1106*
U319	443-1106*
U320	443-891
U321	443-879
U322	443-967
U323	443-804
U324	443-1054
U325	443-892
U326	443-1106*
U327	443-1106*
U328	443-1106*
U329	443-1053
U330	443-1013
U331	443-1058
U332	443-805
U333	443-1106*
U334	443-1106*
U335	443-1106*

CIRCUIT COMPONENT NUMBER	HEATH PART NUMBER
U336	443-983
U337	443-115
U338	443-1058
U339	443-837
U340	443-1106*
U341	443-1106*
U342	443-1106*
U343	443-983
U344	443-915
U345	443-1014
U346	444-133
U347	443-1106*
U348	443-1106*
U349	443-1106*
U350	443-797
U351	443-875
U352	443-1106*
U353	443-1106*
U354	443-1106*
U355	443-875
U356	443-1051
U357	443-799
U358	443-799
U359	443-799
U360	443-1057
U361	443-1051
U362	443-1051
U363	443-799
U364	443-855
U365	443-855
U366	443-754
U367	443-1053
U369	443-103
U370	443-127
U371	443-102
U372	443-1049
U373	443-1057
U374	443-1049
U375	443-1049
U376	444-114
U377	443-1048
U378	443-1051
U379	443-1045

SEMICONDUCTOR IDENTIFICATION

Part Number Index

This index shows a lead configuration detail (basing diagram) of each semicoductor part number.

Transistors

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD
$417-118$	2 N 3393	CPN	

Integrated Circuits

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-754	74LS? 3 40	Tri-state octal buffer	
443-791	74LS244	Tri-state buffer driver	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-797	74LS10	Triple 3-input NAND	
443-799	74LS157	Quad 2-line-to-1-line Multipliers	
443-804	74LS259	8-bit latch	

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-805	74LS273	Octal D flip-flop	
443-837	74LS373	Octal D latch	
443-855	74LS283	Adder	
443-863	74LS374	Octal D flip-flop	

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-875	74LS32	Quad 2 input OR	
443-879	74LS174	Hex D flip-flop	
443-891	74LS86	Quad 2-input Exclusive-OR	
443-892	74LS166	Parallel in Serial Out Shift Register	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-915	74886	Quad 2-input Exclusive-OR	
443-967	7406	Hexinverter	
443-983	74S175	Quad D flip-flop	
443-1013	68A45	CRT controller	

Integrated Circuits (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-1014	68A21	PIA	
443-1045	74ALS02	Quad 2-input NOR Quad buffer NOR	
443-1049	74ALS37	NAND buffer	
443-1051	74ALS74	Dual D flip-flop	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
443-1053	74S174	Hex D flip-flop	
443-1054	74LS169	Up down counter	
443-1057	745241	Octal buffer	
443-1058	74LS541	Octal buffer	

(cont'd)

Integrated Circuits (cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (cont'd)

heath PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION
444-127	Available only PROM from Zenith Data Systems or Heath Company 18 S 22	PROM	
444-133	Available only from Zenith Data Systems or Heath Company HAL10H8 or PAL	Video clear screen	

SEMICONDUCTOR IDENTIFICATION
 PAL Equations

444-114/Video Ram Controller

LOGIC EQUATIONS
RAS $\quad=\overline{\text { Q30 }^{*} \mathrm{Q} 55}+\mathrm{Q} 05^{*} \overline{\mathrm{Q} 30}+\mathrm{Q0}^{*} \mathrm{Q} 60+\mathrm{Q}^{*} 5^{*} \overline{\mathrm{Q} 70^{*}} \overline{\mathrm{VIDRAMSEL}}$
CAS $\quad=\overline{\text { Q40 }}{ }^{*}$ Q65 + Q15 ${ }^{*} \overline{\mathrm{Q} 40}+$ Q70 ${ }^{*} \mathrm{Q} 10+$ Q0 ${ }^{*} \overline{\mathrm{Q} 30}{ }^{*} \overline{\mathrm{VIDRAMSEL}}$
ADMUX $=\overline{\mathrm{Q} 05} * \mathrm{Q} 30+\overline{\mathrm{Q} 60} * \overline{\mathrm{Q} 05}+\mathrm{Q} 35 *$ Q60*VIDRAMSEL
VIDSTRB $=\overline{\text { Q15 }}{ }^{*}$ Q35 + Q0* $\overline{\mathrm{Q} 10}$

SEMICONDUCTOR IDENTIFICATION

444-115/Video Attribute Controller

LOGIC EQUATIONS
ROUT $=$ DISEN*ENBLR*$^{\star} \overline{\text { FLASH }}+$ DISEN * ENBLR*CURSOR*${ }^{*} \overline{\text { RIN }}$ + DISEN*ENBLR* $\overline{\text { CURSOR}}{ }^{*}$ RIN
GOUT $=$ DISEN*ENBLG* $\overline{\text { FLASH }}+$ DISEN*ENBLG*CURSOR*/GIN

+ DISEN*ENBLG* $\overline{\text { CURSOR}}{ }^{*}$ GIN
ROUT $=$ DISEN*$^{*} E N B L B^{*}$ FLASH + DISEN * ENBLB*CURSOR*${ }^{*} \overline{B I N}$
+ DISEN*ENBLB*CURSOR*BIN

SEMICONDUCTOR IDENTIFICATION

444-133/CLRSCRN

Data Buffer for Video RAM with

Clear Screen and Set Screen Functions

LOGIC EQUATIONS

$$
\begin{aligned}
& \text { OUT } 0=\overline{\text { CLRSCRN }} * * \operatorname{IN} 0+\text { CLRSCRN } * \text { SET } \\
& \text { OUT } 1=\overline{\text { CLRSCRN }} * \operatorname{IN} 1+\text { CLRSCRN } * \text { SET } \\
& \text { OUT2 }=\overline{\text { CLRSCRN }} * \operatorname{IN} 2+\text { CLRSCRN } * \text { SET } \\
& \text { OUT } 3=\overline{\text { CLRSCRN }} * \operatorname{IN} 3+\text { CLRSCRN } * \text { SET } \\
& \text { OUT } 4=\overline{\text { CLRSCRN }} * \operatorname{IN} 4+\text { CLRSCRN } * \text { SET } \\
& \text { OUT } 5=\overline{\text { CLRSCRN }} * \operatorname{IN} 5+\text { CLRSCRN } * \text { SET } \\
& \text { OUT } 6=\overline{\text { CLRSCRN }} * \operatorname{IN} 6+\text { CLRSCRN } * \text { SET } \\
& \text { OUT } 7=\overline{\text { CLRSCRN }} * \operatorname{IN} 7+\text { CLRSCRN } * \text { SET }
\end{aligned}
$$

SEMICONDUCTOR IDENTIFICATION

ROM Codes

SEMICONDUCTOR IDENTIFICATION

VRAMSEL video ram select prom for the $Z-100$

0020 ${ }^{\circ}$	OF	db	of h
$0021{ }^{\prime}$	OF	db	Ofh
0022'	OF	db	Ofh
0023'	OF	db	Ofh
0024'	OF	db	Ofh
0025'	OF	db	Ofh
0026'	OF	db	Ofh
0027 ${ }^{\prime}$	OF	db	Ofh
0028'	OF	db	Ofh
$0029{ }^{\prime}$	OF	db	Ofh
002A ${ }^{\text {' }}$	OF	db	Ofh
002B'	OF	db	Ofh
002C ${ }^{\prime}$	OF	db	Of'
002D'	OF	db	Ofh
002E'	OF	db	Ofh
002F'	OF	db	Ofh
0030^{\prime}	OF	db	ofh
$0031{ }^{\prime}$	OF	db	Ofh
0032'	OF	db	of h
0033'	0 F	db	Ofh
0034^{\prime}	OF	db	Ofh
0035'	OF	db	Ofh
0036'	OF	db	Ofh
$0037{ }^{\prime}$	OF	db	Ofh
0038^{\prime}	OF	db	Of h
0039'	OF	db	0fh
003A'	OF	db	of h
003B'	OF	db	Ofh
003C ${ }^{\prime}$	OF	db	Ofh
003D'	OF	db	0 fh
003E'	OF	db	Ofh
003F'	OF	db	Ofh
0040'	0 F	db	of h
0041^{\prime}	OF	db	0 fh
0042'	OF	db	Ofh
0043'	OF	db	Ofh
0044'	OF	db	Ofh
0045 ${ }^{\prime}$	OF	db	0 fh
0046'	OF	db	Ofh
0047'	OF	db	Ofh
0048^{\prime}	OF	db	0 fh
0049^{\prime}	OF	db	Ofh
004 ${ }^{\text {, }}$	OF	db	Ofh
0048'	OF	db	Ofh
004C'	OF	db	Ofh
004D'	OF	db	Ofh

SEMICONDUCTOR IDENTIFICATION

VRAMSEL video ram select prom for the $\mathrm{Z}-100$

004E'	OF	db	Ofh
004F'	OF	db	Ofh
0050'	OF	db	Ofh
0051'	OF	db	Ofh
0052'	OF	db	Ofh
0053'	OF	db	Ofh
0054'	OF	db	Ofh
0055'	OF	db	Ofh
0056'	OF	db	Ofh
0057'	OF	db	Ofh
0058'	OF	db	Ofh
0059 ${ }^{\prime}$	OF	db	Ofh
005A'	OF	db	Ofh
005B'	OF	db	Ofh
005C'	OF	db	0 fh
005D'	OF	db	Ofh
005E'	OF	db	Ofh
005F'	OF	db	Ofh
0060'	OF	db	Ofh
$0061{ }^{\prime}$	OF	db	Ofh
0062 ${ }^{\prime}$	OF	db	Ofh
0063 ${ }^{\prime}$	OF	db	Ofh
0064'	OF	db	Ofh
0065'	OF	db	Ofh
0066 ${ }^{\prime}$	OF	db	Ofh
0067 ${ }^{\prime}$	OF	db	0 fh
0068'	OF	db	Ofh
0069 ${ }^{\prime}$	OF	db	0 fh
006A ${ }^{\prime}$	OF	db	Ofh
006B'	OF	db	Ofh
006C ${ }^{\prime}$	OF	db	Ofh
006D'	OF	db	Ofh
006E'	OF	db	Ofh
006F'	OF	db	Ofh
0070'	OF	db	0fh
0071 ${ }^{\prime}$	OF	db	Ofh
0072'	OF	db	ofh
0073'	OF	db	ofh
0074'	OF	db	Ofh
0075'	OF	db	Ofh
0076'	OF	db	Ofh
0077'	OF	db	Ofh
0078'	OF	db	ofh
0079'	OF	db	Ofh
007A ${ }^{\prime}$	OF	db	0 fh
007B'	OF	db	Ofh

SEMICONDUCTOR IDENTIFICATION

VRAMSEL video ram select prom for the $Z-100$

007C ${ }^{\prime}$	OF	db	Ofh
007D ${ }^{\prime}$	OF	db	Ofh
007E'	OF	db	Ofh
007F'	OF	db	Of h
0080'	OF	db	0 fh
0081'	OF	db	Ofh
0082'	OF	db	Ofh
0083'	OF	db	Ofh
$0084{ }^{\prime}$	OF	db	Ofh
0085 ${ }^{\prime}$	OF	db	Ofh
0086 ${ }^{\prime}$	OF	db	Ofh
0087'	OF	db	Ofh
0088 ${ }^{\prime}$	OF	db	Ofh
0089^{\prime}	OF	db	ofn
008A ${ }^{\prime}$	OF	db	Ofh
008B'	OF	db	Ofh
008C'	OF	db	Ofh
008D'	OF	db	Ofh
008E'	OF	db	Ofh
008F'	OF	db	Ofh
0090^{\prime}	OF	db	0 fh
$0091{ }^{\prime}$	OF	db	0 fh
0092'	OF	db	Ofh
0093'	OF	db	Ofh
0094^{\prime}	OF	db	Ofh
$0095{ }^{\prime}$	OF	db	Ofh
0096'	OF	db	Ofh
0097'	OF	db	Ofh
0098'	OF	db	Ofh
0099'	OF	db	ofh
009A'	OF	db	Ofh
009B'	OF	db	0 fh
009C'	OF	db	Ofh
009D'	OF	db	0 fh
009E'	OF	db	Ofh
009F'	OF	db	Ofh
OOAO'	OF	db	Ofh
OOA 1^{\prime}	OF	db	Ofh
COAP'	OF	db	0 fh
OOA3'	OF	db	0 fh
00A ${ }^{\prime}$	OF	db	Ofh
00A5 ${ }^{\prime}$	OF	db	ofh
00A6'	OF	db	Ofh
00A7'	OF	db	Ofh
00A8'	OF	db	ofh
OOA ${ }^{\prime}$	OF	db	Ofh

SEMICONDUCTOR IDENTIFICATION

VRAMSEL video ram select prom for the $Z-100$

OOAA'	OF	db	Ofh
00 AB '	OF	db	Ofh
OOAC'	OF	db	Of
OOAD'	OF	db	Ofh
OOAE'	OF	db	Ofh
OOAF'	OF	db	Ofh
OCBO'	OF	db	Ofh
OOB 1^{\prime}	OF	db	Ofh
00B2'	OF	db	Ofh
OOB3'	OF	db	Ofh
00B4'	OF	db	Ofh
00B5'	OF	db	Ofh
OOB6'	OF	db	Ofh
00B7'	OF	db	Ofh
00B8'	OF	db	Ofh
0089 ${ }^{\prime}$	OF	db	Ofh
OOBA'	OF	db	Ofh
OOBB'	OF	db	0 fh
OOBC'	OF	db	of h
OOBD'	OF	db	Ofh
OOBE'	OF	db	Ofh
OOBF'	OF	db	Ofh
OOCO'	OF	db	Ofh
0001^{\prime}	OF	db	ofh
00c2'	OF	db	Ofh
00c3'	OF	db	Ofh
00C4'	OF	db	Ofh
00c5 ${ }^{\prime}$	OF	db	Ofh
0006'	OF	$d \mathrm{~b}$	Ofh
0007 ${ }^{\prime}$	OF	db	ofh
00C8 ${ }^{\prime}$	OF	db	Ofh
$0009{ }^{\prime}$	OF	db	ofh
OOCA'	OF	db	ofh
DOCB'	OF	db	Ofh
OOCC'	OF	db	Ofh
00CD'	OF	db	Ofh
OOCE'	OF	db	Ofh
OOCF'	OF	db	Ofh
OODO'	OF	db	Ofh
OOD 1^{\prime}	OF	db	Ofh
OOD2'	OF	db	Ofh
00D3'	OF	db	Ofh
OOD ${ }^{\prime}$	OF	db	ofh
0005 ${ }^{\prime}$	OF	db	Ofh
OOD6 ${ }^{\prime}$	OF	db	Ofh
0007 ${ }^{\prime}$	OF	db	Ofh

SEMICONDUCTOR IDENTIFICATION

VRAMSEL video ram select prom for the $Z-100$

0008 ${ }^{\prime}$	OF	db	Ofh
00D9 ${ }^{\prime}$	OF	db	Ofh
OODA'	OF	db	ofh
00DB'	OF	db	Ofh
OODC '	OF	db	Ofh
OODD'	OF	db	Ofh
OODE'	OF	db	Ofh
OODF ${ }^{\prime}$	OF	db	Ofh
OOEO'	OF	db	Ofh
OOE 1^{\prime}	OF	db	Ofh
00E2'	OF	db	Ofh
OOE3'	OF	db	ofh
OOE 4^{\prime}	OF	db	Ofh
OOE5'	OF	db	Ofh
00E6'	DF	db	Ofh
OOE7'	OF	db	Ofh
O0E8'	OF	db	Ofh
OOE9'	OF	db	Ofh
OOEA'	OF	db	Ofh
OOEB'	OF	db	Ofh
OOEC'	OF	db	Ofh
OOED'	OF	db	Ofh
OOEE'	OF	db	Ofh
OOEF'	OF	db	Ofh
OOFO'	OF	db	Ofh
OOF 1^{\prime}	OF	db	Ofh
00F2'	OF	db	Ofh
00F3'	OF	db	Ofh
OOF4 ${ }^{\prime}$	OF	db	Ofh
OOF5'	OF	db	0 fh
00F6 ${ }^{\prime}$	OF	db	Ofh
OOF7'	OF	db	Ofh
00F8 ${ }^{\prime}$	OF	db	Ofh
00F9'	OF	db	Ofh
OOFA'	OF	db	Ofh
OOFB'	OF	db	Ofh
OOFC'	OF	db	ofh
OOFD'	OF	db	Ofh
OOFE'	OF	db	ofh
OOFF'	OF	db	ofh

SEMICONDUCTOR IDENTIFICATION

VRAMSEL video ram select prom for the Z-100

Macros:
Symbols:
BLU_EN 0006 GRN_EN OOOA RED_EN OOOC

No Fatal error(s)

SEMICONDUCTOR IDENTIFICATION

SEMICONDUCTOR IDENTIFICATION

VIOSEL - video i/o select prom

0020*	OF	db	00fh
$0021{ }^{\prime}$	OF	db	00fh
0022'	OF	db	00fh
0023'	OF	db	00 fn
0024^{\prime}	OF	db	00fh
0025'	OF	db	00fh
0026'	OF	db	00fh
0027 '	OF	db	00fh
0028'	OF	db	00fh
0029 ${ }^{\prime}$	OF	db	00fh
002A ${ }^{\text {' }}$	OF	db	00fh
002B ${ }^{\prime}$	OF	db	00fh
002C'	OF	db	00fh
002D'	OF	db	00fh
002E'	OF	db	00fh
002F'	OF	db	00fh
0030^{\prime}	OF	db	00fh
0031'	OF	db	00fh
0032'	OF	db	Dofh
0033'	OF	db	00fh
0034'	OF	db	00fh
$0035{ }^{\prime}$	OF	db	00fh
0036'	OF	db	00fh
0037^{\prime}	OF	db	00fh
0038'	OF	db	00fh
$0039{ }^{\prime}$	OF	db	00fh
003A'	OF	db	00fh
0038'	OF	db	00fh
003C'	OF	db	00fh
003D ${ }^{\prime}$	OF	db	nofh
003E'	OF	db	00fh
003F'	OF	db	00fh
0040'	OF	db	00fh
0041^{\prime}	OF	db	00fh
0042'	OF	db	00fh
0043'	OF	db	00 fh
0044^{\prime}	OF	db	00 fh
0045 ${ }^{\prime}$	OF	db	00fh
0046'	OF	db	00fh
0047^{\prime}	OF	db	00fh
0048 ${ }^{\prime}$	OF	db	00fh
0049^{\prime}	OF	db	00fh
004 ${ }^{\text {' }}$	OF	db	00fh
004B'	OF	db	00fh
$004 \mathrm{C}^{\prime}$	OF	db	00fh
004D'	OF	db	00fh

SEMICONDUCTOR IDENTIFICATION

VIOSEL - video i/o select prom

004E'	OF	db	00fh
004F'	OF	db	OOfh
0050'	OF	db	00fh
0051'	OF	db	00 fh
0052'	OF	db	00fh
0053'	OF	db	O0fh
0054'	OF	db	00fh
0055 ${ }^{\prime}$	OF	db	Oofh
0056'	OF	db	00 fh
0057'	OF	db	00fh
0058'	OF	db	00fh
0059'	OF	db	OOfh
005A'	OF	db	00fh
005B'	OF	db	00 fh
005C'	OF	db	OOfh
005D'	OF	db	00fh
005E'	OF	db	00 fh
005F'	OF	db	O0fh
0060'	OF	db	00 fh
$0061{ }^{\prime}$	OF	db	00 fh
0062'	OF	db	00fh
0063'	OF	db	00 fh
0064^{\prime}	OF	db	00fh
0065'	OF	db	00 fh
0066'	OF	db	00fh
$0067{ }^{\prime}$	OF	db	00fh
0068'	OF	db	00 fh
0069'	OF	db	OOfh
006A'	OF	db	00 fh
006B'	OF	db	OOfh
006C'	OF	db	00 fh
006D'	OF	db	00fh
006E'	OF	db	00fh
006F'	OF	db	00fh
0070'	OF	db	00 fh
0071'	OF	db	00fh
0072'	OF	db	00fh
0073'	OF	db	00fh
0074'	OF	db	OOfh
0075'	OF	db	00fh
0076'	OF	db	00 fh
0077'	OF	db	00 fh
0078'	OF	db	00fh
0079'	OF	db	00fh
007A'	OF	db	00 fh
007B'	OF	db	00fh

SEMICONDUCTOR IDENTIFICATION

VIOSEL - video i/o select prom

007C ${ }^{\prime}$	OF	db	00fh
007D'	OF	db	00fh
007E'	OF	db	00fh
007F'	OF	db	00fh
0080'	OF	db	00fh
0081'	OF	db	00fh
0082'	OF	db	00fh
0083 '	OF	db	00fh
$0084{ }^{\prime}$	OF	db	00fh
0085'	OF	db	00fh
$0086{ }^{\prime}$	OF	db	00fh
0087'	OF	db	00 fh
0088'	OF	db	00fh
0089'	OF	db	00fh
008A.	OF	db	00fh
008B'	OF	db	00fh
008C'	OF	db	00fh
008D'	OF	db	00fh
008E'	OF	db	Oofh
008F'	OF	db	00fh
0090'	OF	db	00fh
0091'	OF	db	00fh
0092'	OF	db	00 fh
0093'	OF	db	00fh
0094'	OF	db	00fh
$0095{ }^{\prime}$	OF	db	OOfh
0096'	OF	db	00 fh
$0097{ }^{\prime}$	OF	db	00 fh
$0098{ }^{\prime}$	OF	db	00 fh
0099 ${ }^{\prime}$	OF	db	00fh
009A ${ }^{\text {' }}$	OF	db	00in
009 ${ }^{\prime \prime}$	OF	db	Dofn
009C'	OF	db	00fh
009D'	OF	db	D0fh
009E'	OF	db	00fh
009F'	OF	db	00fh
OOAO'	OF	db	00fh
OOA1'	OF	db	00fh
00A2'	OF	db	Oofh
00A3'	OF	db	00fh
00A ${ }^{\prime}$	OF	db	00fh
OOA5'	OF	db	00fh
00A6'	OF	db	00fh
00A7'	OF	db	00fh
00A8'	OF	db	00fh
OOA ${ }^{\prime}$	OF	db	00fh

SEMICONDUCTOR IDENTIFICATION

VIOSEL - video i/o select prom

00AA'	OF	db	00fh
00AB'	OF	db	00fh
OOAC'	OF	db	00fh
OOAD'	OF	db	00fh
OOAE'	OF	db	DOfh
OOAF'	OF	db	00fh
OOBO'	OF	db	00fh
00B1 ${ }^{\prime}$	OF	db	00 fh
00B2'	OF	db	00fh
00B3'	OF	db	00fh
00B4 ${ }^{\prime}$	OF	db	00fh
OOB5'	OF	db	Dofh
0086 ${ }^{\prime}$	OF	db	00fh
00B7 ${ }^{\prime}$	OF	db	00fh
00B8 ${ }^{\text { }}$	OF	db	00fh
00B9 ${ }^{\prime}$	OF	db	00fh
OOBA'	OF	db	00fh
OOBB'	OF	db	00fh
OOBC'	OF	db	00fh
OOBD'	OF	db	00fh
OOBE'	OF	db	00fh
OOBF'	OF	db	00fh
00C0'	OF	db	00 fr
OOC 1^{\prime}	OF	db	00fh
00C2'	OF	db	00 fh
00C3'	OF	db	00sh
00C4'	OF	db	00fh
00C5'	OF	db	00fh
00C6'	OF	db	00 fh
00C7'	OF	db	00fh
00C8'	OF	db	00 fh
00C9'	OF	db	DOfh
00CA'	OF	db	00 fh
OOCB'	OF	db	00fh
OOCC'	OF	$d \mathrm{~b}$	OOfh
OOCD'	OF	db	00fh
OOCE'	OF	db	00fh
OOCF'	OF	db	00fh
OODO'	OF	db	00 fh
OOD 1^{\prime}	OF	db	00 fh
00D2'	OF	db	00fh
OOD3'	OF	db	00fh
00054'	OF	db	00fh
00D5'	OF	db	00fh
00D6'	OF	db	00fh
00D7'	OF	db	00fh

SEMICONDUCTOR IDENTIFICATION

VIOSEL - video i/o select prom

00D8 ${ }^{\text {, }}$	05	db	sel6821
00D9 ${ }^{\text { }}$	05	db	sel6821
00DA ${ }^{\text {' }}$	05	db	sel6821
OODB'	05	db	sel6821
OODC'	06	db	sel6845
OODD'	06	db	sel6845
OODE'	03	db	lightpen
00DF'	OF	db	00fh
OOEO'	OF	db	Oorn
OOE1'	OF	db	00fh
O0E2'	OF	db	00fh
O0E3'	OF	db	00fh
O0E4 ${ }^{\prime}$	OF	db	00fh
OOE5'	OF	db	00fh
OOE6'	OF	db	00fh
DOE7'	OF	db	Oofh
O0E8'	OF	db	00fh
OOE9'	OF	db	00fh
OOEA'	OF	db	00fh
OOEB'	OF	db	00fh
OOEC'	OF	db	00fh
OOED'	OF	db	00fh
OOEE'	OF	db	00fh
OOEF'	OF	db	00fh
OOFO'	OF	db	00fh
OOF1'	OF	db	00fh
OOF2'	OF	db	00fh
00F3'	OF	db	00fh
00F4'	OF	db	00fh
00F5'	OF	db	00fh
00F6'	OF	db	00fh
00F7 ${ }^{\prime}$	OF	db	00fh
00F8.	OF	db	00fh
00F9'	OF	db	00fh
00FA ${ }^{\text {' }}$	OF	db	00fh
00FB'	OF	db	00fh
OOFC'	OF	db	OOfh
OOFD'	OF	db	00fh
OOFE'	OF	db	00fh
00FF'	OF	db	00fh
0100'	OF	db	00fh
0101'	OF	db	00fh
		end	

SEMICONDUCTOR IDENTIFICATION

```
VIOSEL - video i/o select prom
Macros:
Symbols:
LIGHTP 0003 SEL682 0005 SEL684 0006
No Fatal error(s)
```


SEMICONDUCTOR IDENTIFICATION

SEMICONDUCTOR IDENTIFICATION

25'	AC	db	AC
26^{\prime}	AD	db	AD
27^{\prime}	AE	db	AE
28^{\prime}	19	db	19
29^{\prime}	1A	db	1A
$2 A^{\prime}$	1 B	db	1B
$2 B^{\prime}$	1 C	db	1 C
2C'	1D	db	1 D
2D'	AF	db	AF
2E'	B0	db	B0
$2 F^{\prime}$	B1	db	B1
30:			
30'	1 E	db	1 E
31^{\prime}	1 F	db	1 F
32^{\prime}	20	db	20
33^{\prime}	21	db	21
34^{\prime}	22	db	22
35^{\prime}	B2	db	B2
36^{\prime}	B3	db	B3
37^{\prime}	B4	db	B4
38^{\prime}	23	db	23
39^{\prime}	24	db	24
$3 \mathrm{~A}^{\circ}$	25	db	25
$3 B^{\prime}$	26	db	26
$3 C^{\prime}$	27	db	27
$3{ }^{\prime}$	B5	db	B5
$3 E^{\prime}$	B6	db	B6
3F'	B7	db	B7
40:			
40'	28	db	28
41^{\prime}	29	db	29
42'	2A	db	2A
43'	2B	db	2 B
44'	2 C	db	2 C
45^{\prime}	B8	db	B8
46^{\prime}	B9	db	B9
47^{\prime}	BA	db	BA
48'	2D	db	2D
49^{\prime}	2E	db	2 E
$4 A^{\prime}$	2 F	$d b$	2F
$4 B^{\prime}$	30	db	30
$4 C^{\prime}$	31	db	31
4D'	BB	$d b$	BB
4E'	BC	db	BC
4F'	BD	db	BD
50:			
50^{\prime}	32	db	32
51^{\prime}	33	db	33
52'	34	db	34

SEMICONDUCTOR IDENTIFICATION

53'	35	db	35
54^{\prime}	36	db	36
55^{\prime}	BE	db	BE
56^{\prime}	BF	db	BF
57^{\prime}	C0	db	C0
58^{\prime}	37	db	37
59^{\prime}	38	db	38
5A'	39	db	39
$5 B^{\prime}$	3A	db	3A
$5 C^{\prime}$	3B	db	3B
5D'	C1	db	C1
5E'	C2	db	C2
55^{\prime}	C3	db	C3
60:			
60'	3C	db	3C
61^{\prime}	3D	db	3D
62'	3E	db	3E
63^{\prime}	3 F	db	3 F
64^{\prime}	40	db	40
65^{\prime}	C4	db	C4
66'	C5	db	C5
67^{\prime}	C6	db	C6
68^{\prime}	41	db	41
69^{\prime}	42	db	42
6A'	43	db	43
$6 \mathrm{~B}^{\prime}$	44	db	44
6C'	45	db	45
6D'	C7	db	C7
6E'	C8	db	C8
$6 F^{\prime}$	C9	db	C9
70:			
70^{\prime}	46	db	46
71°	47	db	47
72'	48	db	48
73'	49	db	49
74'	4A	db	4A
75^{\prime}	CA	db	CA
76'	CB	db	CB
77^{\prime}	CC	db	CC
78'	4 B	db	4B
79^{\prime}	4 C	db	4 C
$7{ }^{\prime}$	4D	db	4 D
$7{ }^{\prime}$	4E	db	4E
$7 C^{\prime}$	4F	db	4F
$7{ }^{\prime}$	$C D$	db	CD
7E'	CE	db	CE
$7 \mathrm{~F}^{\prime}$	CF	db	CF
$80:$			
80^{\prime}	50	db	50

SEMICONDUCTOR IDENTIFICATION

81^{\prime}	51	db	51
82'	52	db	52
83'	53	db	53
84^{\prime}	54	db	54
85'	D0	db	D0
86'	D1	db	D1
87^{\prime}	D2	db	D2
88'	55	db	55
89'	56	db	56
$8 A^{\prime}$	57	db	57
$8 B^{\prime}$	58	db	58
$8 \mathrm{C}^{\prime}$	59	db	59
8D'	D3	db	D3
8E'	D4	db	D4
$8 \mathrm{~F}^{\prime}$	D5	db	D5
_90:			
90^{\prime}	5A	db	5A
91^{\prime}	5B	db	5B
92^{\prime}	5C	db	5C
93'	5D	db	5D
94^{\prime}	5E	db	5E
95^{\prime}	D6	db	D6
96^{\prime}	D7	db	D7
971	D8	db	D8
98'	5 F	db	5 F
99^{\prime}	60	db	60
9 ${ }^{\prime}$	61	db	61
$9 \mathrm{~B}^{\prime}$	62	db	62
$9 \mathrm{C}^{\prime}$	63	db	63
9D'	D9	db	D9
9E'	DA	db	DA
$9 \mathrm{~F}^{\prime}$	DB	db	DB
A0:			
AO'	64	db	64
A ${ }^{\prime}$	65	db	65
A2'	66	db	66
A3'	67	db	67
A ${ }^{\prime}$	68	db	68
A5'	DC	db	DC
A6'	DD	db	DD
A7'	DE	db	DE
A8'	69	db	69
A9'	6A	db	6A
AA'	6B	db	6B
$A B^{\prime}$	6 C	db	6 C
$A C^{\prime}$	6 D	$d \mathrm{~b}$	6D
$A D^{\prime}$	DF	db	DF
$A E^{\prime}$	EO	db	E0
AF'	E1	db	E1

SEMICONDUCTOR IDENTIFICATION

B0:			
B0'	6 E	db	6 E
B1 ${ }^{\prime}$	6 F	db	6F
B2'	70	db	70
B3'	71	db	71
B4'	72	db	72
B5'	E2	db	E2
B6'	E3	db	E3
B7'	E4	db	E4
B8'	73	db	73
B9 ${ }^{\prime}$	74	db	74
BA'	75	db	75
BB'	76	db	76
B^{\prime}	77	db	77
BD'	E5	db	E5
BE'	E6	db	E6
BF'	E7	db	E7
C0:			
$\mathrm{CO}{ }^{\prime}$	78	db	78
C1'	79	db	79
C2'	7A	db	7A
C3'	7B	db	7B
C4'	7 C	db	7 C
C5'	E8	db	E8
C6'	E9	db	E9
C7'	EA	db	EA
C8'	7 D	db	7D
C9'	7E	db	7E
CA'	7 F	db	7 F
CB'	80	db	80
CC'	81	db	81
$C D^{\prime}$	EB	db	EB
CE'	EC	db	EC
CF'	ED	db	ED
DO:			
D0'	82	db	82
D1'	83	db	83
D2'	34	db	84
D3'	85	db	85
D4'	86	db	86
D5'	EE	db	EE
D6'	EF	db	EF
D7'	F0	db	F0
D8'	87	db	87
D9 ${ }^{\prime}$	88	db	88
DA'	89	db	89
DB'	8A	db	8A
DC'	8B	db	8B
DD'	F1	db	F1
DE'	F2	db	F2
DF'	F3	db	F3

SEMICONDUCTOR IDENTIFICATION

EO:			
E0'	8C	db	8C
E1'	8D	db	8D
E2'	8E	db	8E
E3'	8F	db	8 F
E4'	90	db	90
E5'	F4	db	F4
E6'	F5	db	F5
E7'	F6	db	F6
E8'	91	db	91
E9'	92	db	92
EA'	93	db	93
EB'	94	db	94
EC'	95	db	95
ED'	F7	db	F7
EE'	F8	db	F8
EF'	F9	db	F9
F0:			
F0'	96	db	96
F1'	97	db	97
F2'	98	db	98
F3'	99	db	99
F4'	9A	db	9A
F5'	FA	db	FA
F6'	FB	db	FB
F7'	FC	db	FC
F8'	9B	db	9B
F9'	9 C	db	9C
FA'	9D	db	9D
FB'	9E	db	9E
FC'	9 F	db	9F
FD'	FD	db	FD
FE'	FE	db	FE
FF'	FF	db	FF

CIRCUIT BOARD X-RAY VIEW

NOTE: To find the PART NUMBER of a component for the purpose of ordering a replacement part:
A. Find the circuit component number (R303, C304, etc.) on the X-Ray View.
B. Locate the same number in the "Circuit Component Number" column of the "Replacement Parts List."
C. Adjacent to the circuit component number, you will find the PART NUMBER and DESCRIPTION which must be supplied when you order a replacement part.

VIDEO LOGIC CIRCUIT BOARD Shown from the component side Component side shown in red, bottom sio gray.

JGIC CIRCUIT BOARD

m the component side.

wn in red, bottom side shown in

 gray.
INTERCONNECT PIN DEFINITIONS

The following statements briefly define the video logic circuit board connecting pins.

BAO-BA23	Buffered address lines.
BDIO-BDI7	Buffered data input lines.
BDO0-BDO7	Buffered data output lines.
BMWRT	Buffered memory write signal.
$\overline{\text { DBIN }}$	Control signal that requests data on the data input bus.
ECLK	Enable clock signal for the 6845 and the 6821.
GND	Provides common ground for the system.
GSEL	Green video RAM select signal.
$\overline{10}$	Selects the input or output function.
LTPNSTB	Light pen strobe signal.
MEMR	Memory read status signal.
OUT	Status signal indicating an output data transfer.
OUT	Status signal indicating an output data transfer.
$\overline{\text { POC }}$	Power on clear.
RDBFRENBL	Read buffer enable signal.

INTERCONNECT PIN DEFINITIONS

RESET	Reset signal that resets the Computer to its power-on status.
STVAL-SYNC	Status valid signal ANDed with the sync signal.
VIDRAMRDY	Video RAM ready. Causes the CPU to wait if the CPU attempts to access video RAM while the CRT-C is addressing video RAM.
WO	Write status signal.
WR	Write control signal.
Some other important video signals are:	
BDOTA	Blue dot (pixel) data signals.
BLUDO-BLUD7	Blue video signal.
BLUE	Blue video RAM select signal.
Column address strobe.	

INTERCONNECT PIN DEFINITIONS

HI	+5 volts through pullup resistor.
HI1	+5 volts through pullup resistor.
HI2	+5 volts through pullup resistor.
HI3	+5 volts through pullup resistor.
HSYNC	Horizontal sync signal.
RAS	Row address stobe signal.
RDOTA	Red dot (pixel) data signals.
RED	Red video signals.
REDD0-REDD7	Red data output bus from video RAM.
$\overline{\text { RSEL }}$	Red video RAM select signal.
VA0-VA7	VRAM address lines.
VERT	Vertical sync signal.
VIDRAMSEL	Video RAM select signal. Indicates CPU has accessed VRAM.
VSYNC	Vertical sync signal.
VSYNC/CSYNC	Vertical sync or composite sync signal. Is selected by jumper.
$\overline{\text { WRTB }}$	Write blue, enables simultaneous write to blue plane.
$\overline{\text { WRTG }}$	Write green, enables simultaneous write to green plane.
$\overline{\text { WRTR }}$	Write red, enables simultaneous write to red plane.

Video Deflection Board

Circuit Description 5.2
Troubleshooting 5.4
Recalibration 5.5
Replacement Parts List 5.8
Circuit Board X-Ray Views 5.11
Schematic (Inside Envelope at rear of manual)

CIRCUIT DESCRIPTION

The video deflection board is only used in the all-in-one models of the Z-100 family of computers. It converts TTL signals coming from the video logic board to the voltages necessary to drive the CRT. The board contains the vertical circuits, horizontal circuits, video amplifier, and the high-voltage power supply.

Refer to the Schematic Diagram as you read the following paragraphs.

Vertical Circuits

The vertical sync signal couples through capacitor C301 to synchronize the vertical oscillator, transistors Q301 and Q302. The oscillator output is from the emitter of Q301, where the signal is shaped by C 303 to help produce a linear sweep.

The oscillator signal is coupled to the base of differential amplifier Q303. Its base acts as the inverting input and its emitter as the noninverting input. The output of the amplifier feeds back to its emitter to ensure good linearity, and the RC network between R312 and R317 set the gain and frequency response of the stage.

The output of Q303 drives the vertical driver and amplifier Q304 through Q307. This stage develops the sweep current through the vertical deflection yoke at TX202A. Q308 ensures a fast vertical retrace.

Horizontal Circuits

The horizontal sync pulse couples through C101 and is applied to Q104. Q104 amplifies the signal and passes it on to the timer, IC101. Here, the signal is shaped and retimed, and applied to horizontal driver Q102. Q102 couples the signal to Q103 through TX101. R127 and C114 shape the signal while R128 dampens any ringing that may occur. The collector current of Q103 couples through the flyback transformer, the width coil, and the linearity coil to drive the horizontal deflection yoke at TX202B.

CIRCUIT DESCRIPTION

High Voltage Power Supply

The flyback transformer, TX102, uses the signal coming from Q103 to generate the acceleration voltage for the CRT. This voltage is rectified before it leaves the transformer. The secondary of TX102 also develops focus, blanking, and bias voltages for the CRT through C121, CR106, and CR108.

Also, the secondary of T102 develops bias voltages for the hori$z o n t a l$ circuits (+12 volts) and the video amplifier (+70 volts).

Video Amplifier

The video amplifier is a cascode amplifier consisting of Q401 and Q402. This circuit has high gain, low noise, and low input and output capacitances.

The video signal enters at the base of Q402. A positive voltage at this point is white information. Q401 and Q402 conduct to make the CRT cathode more negative.

Resistor R412 in the emitter circuit of Q402 sets the overall stage gain, while C403, R413, and L401 set the frequency response.

Power Supply

Power for the video deflection board is a single 12-volt source from the main power supply.

TROUBLESHOOTING

Use the following chart for help in identifying the source of problems. The chart lists conditions and possible causes for specific problems. If you cannot resolve the problem, refer to the warranty and service information supplied with your Computer.

If you have electronics service skill, you may wish to service some problems yourself. In the following chart, if a particular part is mentioned, check that part and other components that are associated with it. Remember to locate and correct the cause when components are damaged, or the problem could reoccur.

Refer to the "Circuit Board X-Ray Views" for the physical location of parts on the circuit boards.

CONDITION	Possible cause
No high voltage.	1. Q102, Q103, or associated circuitry. 2. Connector not plugged into vertical deflection board. 3. No +12 volts to deflection board. 4. TX102.
No horizontal sync.	1. IC101. 2. Q104. 3. No timing pulse at base of Q104 (from main board).
No vertical deflection.	1. Q301, Q302, or Q303. 2. Q304, Q306, Q307, or associated circuitry. 3. Deflection yoke.
No vertical sync.	1. Q302 and associated circuitry. 2. No sync signal from main board.
High voltage present, but no video.	1. No video signal from main board. 2. Q401, Q402, and associated circuitry. 3. Brightness control turned down.
No focus.	1. TX102, R148. 2. High voltage is too low.
Raster (lighted area) is not centered.	1. Yoke tabs not adjusted properly.

PICTORIAL 5-1

PICTORIAL 5-1

bration Control Locations

Boot the demo disk supplied with your Computer and utilize the rectangle surrounding the menu for the following procedures.

Refer to Pictorial 5-1 for the following steps.
NOTE: In the following adjustments, the controls called for will be on the video deflection circuit board unless stated otherwise. All controls on the circuit board may be accessed from the left side of the computer through holes in the printed circuit board and shield.

WARNING: High voltage is present on the back of the CRT and on the video deflection circuit board. As you make adjustments to these areas, use insulated or non metallic tools.

Adjust the BRITE control clockwise until you see the background raster. Then turn the control counterclockwise until the background raster just disappears.

If your Computer has the color memory option, load ZBASIC (or use the Demo Disk) and then enter the following program before proceeding to the next step.

Enter the program exactly as shown:

COLOR BAR PROGRAM

```
100 CLS
110 COL (1) =1:COL (2)=4:COL (3)=5:COL(4)=2:COL(5)=3:COL}(6)=6:\operatorname{COL}(7)=
120 X=1
130 Y=80
140 LINE (0,0)-(640,215),7,B
150 FOR I=0 T0 7
160 LINE (X,1)-(Y,214),COL(I),BF
170 X=X+80
180 Y=Y+80
190 NEXT I
200 END
```


RECALIBRATION

For these adjustments, if you have the color memory option, run the program you have just entered. If you do not have the color memory option, simply follow the instructions in the following steps.

Adjust the rear panel control labeled J14 until the display is at a comfortable brightness level. If you are using the color bar program, and have color RAM installed, you should adjust this control until you can see the eight-step gray scale (black being the first step). Do not make the display too bright as the screen phosphors may be damaged by too much brightness and create 'burns'.

If you have been using the color bar program, return to the demo disk main menu for the following steps.

If necessary, loosen the indicated screw and rotate the deflection yoke until the edges of the display are vertical and horizontal. Then, retighten the screw.

Adjust the centering rings on the deflection yoke to the position that best centers the rectangle on the screen.

Adjust the FOCUS control until the characters are as sharp as possible (this may be at one end of the range).

Adjust the WIDTH coil so the sides of the rectangle are $7 / 8^{\prime \prime}$ to $1-1 / 8^{\prime \prime}$ from the edge at the vertical center (on each side) of the CRT mask. If necessary, recenter the rectangle with the centering rings and check the dimensions again.

Adjust the VERTICAL SIZE control so the top and bottom of the rectangle are $1 / 2^{\prime \prime}$ (plus or minus $1 / 8^{\prime \prime}$) from the edge of the CRT mask. (If necessary, first temporarily remove the metal rail from the cabinet shell.) Then, if necessary, recenter the rectangle.

Recheck the dimensions in the preceding two steps and repeat the steps if necessary.

RECALIBRATION

Locate the one area of the four edges of the display that is the least straight. Adjust the foam magnet on the post that protrudes from the yoke at the position which is closest to this location until the display edge is as straight as possible.

Repeat these adjustments as necessary all around the yoke at any of the eight locations which require straightening. The closer the magnets are to the CRT, the greater the effect they will have.

Repeat any of the above adjustments as necessary for an optimum display.

Page 5.8

REPLACEMENT PARTS LIST

CIRCUIT	HEATH	Description
Comp. No. PartNo.		

Resistors

All resistors are $1 / 4$-watt, 5%, unless specified otherwise.

R101	6-102-12	1000Ω
R103	6-102-12	1000Ω
R106	6-223-12	$22 \mathrm{k} \Omega$
R107	6-102-12	1000Ω
R109	6-472-12	4700 Ω, 2\%
R112	6-103	$10 \mathrm{k} \Omega, 1 / 2$-watt, 2%
R116	6-102-12	1000Ω
RX122	234-282	22Ω, failsafe
RX124	1-55-12	$10 \Omega, 1 / 2$-watt, failsafe
R127	6-181-12	180Ω
R128	6-820-12	82Ω
RX129	234-283	100Ω, failsafe
R131	6-681-12	680Ω
R132	6-153-12	$15 \mathrm{k} \Omega$
R137	6-103-12	$10 \mathrm{k} \Omega$
R138	6-103-12	$10 \mathrm{k} \Omega, 10 \%$
R139	234-288	$100 \mathrm{k} \Omega$ control
R142	6-222	2200 Ω, 1/2-watt, 10\%
R144	6-274	$270 \mathrm{k} \Omega$, 1/2-watt, 10\%
R146	6-103-12	$10 \mathrm{k} \Omega, 1 / 2$-watt, 10%
R147	6-683-12	$68 \mathrm{k} \Omega, 10 \%$
R148	234-287	$2 \mathrm{M} \Omega$ control
R149	6-274	270 k Ω, 1/2-watt, 10\%
R151	6-473-12	$47 \mathrm{k} \Omega$
R301	6-562-12	5600Ω
R302	6-223-12	$22 \mathrm{k} \Omega$
R303	6-204-12	$200 \mathrm{k} \Omega$
R304	6-470-12	47Ω
R306	6-273-12	$27 \mathrm{k} \Omega$
R307	6-682-12	6800Ω
R308	6-273-12	$27 \mathrm{k} \Omega$
R309	6-225-12	$2.2 \mathrm{M} \Omega$
R311	6-115-12	$1.5 \mathrm{M} \Omega$
R312	234-289	$250 \mathrm{k} \Omega$ control
R313	6-101-12	100Ω
R314	6-123-12	$12 \mathrm{k} \Omega$
R316	6-273-12	$27 \mathrm{k} \Omega$
R317	6-222-12	2200Ω
R318	6-101-12	100Ω
R319	6-473	$47 \mathrm{k} \Omega$, 1/2-watt
R321	6-222-12	2200Ω
R322	6-222-12	2200Ω
RX323	234-281	3.3Ω, failsafe
R324	6-221	220Ω, failsafe
R326	6-750-12	75Ω
R327	6-332-12	3300Ω
R328	6-391-12	390Ω

Resistors (Cont'd.)

R329	$6-681-12$	680Ω
R331	$6-279-12$	$2.7 \Omega, 5 \%$
RX333	$234-282$	22Ω, failsafe
R337	$6-101-12$	100Ω
R402	$1-50-2$	820Ω, 2-watt
R403	$6-102-12$	1000Ω
R404	$6-102-12$	1000Ω
R406	$6-470-12$	$47 \Omega, 10 \%$
R407	$6-331$	$330,1 / 2$-watt, 10\%
R409	$6-470-12$	47Ω
R412	$6-470-12$	$47 \Omega, 10 \%$
R413	$6-220-12$	$22 \Omega, 10 \%$
R414	$6-15-12$	$15 \mathrm{k} \Omega$
R416	$234-282$	22Ω, failsafe

Capacitors

C101	$234-285$	$150 \mu F$
C106	$27-161$	$.01 \mu \mathrm{~F}$
C107	$27-105$	$.0068 \mu \mathrm{~F}$
C109	$25-928$	$33 \mu \mathrm{~F}$
C112	$27-161$	$.01 \mu \mathrm{~F}$
C114	$27-128$	$.022 \mu \mathrm{~F}$
CX116	$27-27$	$.022 \mu \mathrm{~F}$
CX117	$234-284$	$10 \mu \mathrm{~F}$
C118	$27-128$	$.022 \mu \mathrm{~F}$
C119	$21-43$	$.001 \mu \mathrm{~F}$
C121	$21-43$	$.001 \mu \mathrm{~F}$
C122	$25-928$	$33 \mu \mathrm{~F}$
C123	$25-942$	$220 \mu \mathrm{~F}$
C124	$25-942$	$220 \mu \mathrm{~F}$
C126	$27-161$	$.01 \mu \mathrm{~F}$
C127	$27-161$	$.01 \mu \mathrm{~F}$
C128	$21-43$	$.001 \mu \mathrm{~F}$
C129	$21-43$	$.001 \mu \mathrm{~F}$
C301	$234-286$	1500 pF
C302	$234-285$	150 pF
C303	$27-77$	$.1 \mu \mathrm{~F}$
C304	$25-928$	$33 \mu \mathrm{~F}$
C307	$25-917$	$10 \mu \mathrm{~F}$
C308	$25-900$	$1 \mu \mathrm{~F}$
C309	$25-900$	$1 \mu \mathrm{~F}$
C311	$25-917$	$10 \mu \mathrm{~F}$
C312	$25-884$	$47 \mu \mathrm{~F}$
C313	$25-917$	$10 \mu \mathrm{~F}$
C314	$27-128$	$.022 \mu \mathrm{~F}$
C316	$25-905$	$470 \mu \mathrm{~F}$
C317	$25-942$	$220 \mu \mathrm{~F}$
C401	$25-912$	$3.3 \mu \mathrm{~F}$
C402	$25-917$	$10 \mu \mathrm{~F}$
C403	$234-285$	150 pF

REPLACEMENT PARTS LIST

CIRCUIT	HEATH	Description
Comp.No. PartNo.		

Inductors

L101	234-259	Width coil
L102	$234-260$	Linearity coil

Transformers

TX101	234-261	Horizontal drive
TX102	234-262	Horizontal sweep

Diodes

CR102	$57-27$
CR104	$234-264$
CR106	$234-263$
CR107	$57-27$
CR109	$234-265$
CR111	$234-263$
CR112	$234-267$
CR301	$234-266$
CR302	$57-27$
CR303	$57-27$
CR304	$234-267$
CR401	$234-267$

Transistors

Q102	$234-270$	Horizontal driver
Q103	$234-276$	Horizontal output
Q104	$234-275$	Sync amplifier
Q301	$234-275$	Vertical oscillator I
Q302	$234-274$	Vertical oscillator II
Q303	$234-274$	Differential amplifier
Q304	$234-270$	Vertical driver
Q306	$234-272$	Vertical output II
Q307	$234-271$	Vertical jutput I
Q308	$234-270$	Vertical retrace
Q401	$234-273$	Video output
Q402	$234-290$	Video driver

Integrated Circuit

U101 234-269 Timer

CIRCUIT BOARD X-RAY VIEWS

NOTE: To find the PART NUMBER of a component for the purpose of ordering a replacement part:
A. Find the circuit component number (R303, C304, etc.) on the X-Ray View.
B. Locate the same number in the "Circuit Component Number" column of the "Replacement Parts List."
C. Adjacent to the circuit component number, you will find the PART NUMBER and DESCRIPTION which must be supplied when you order a replacement part.

VIDEO DEFLECTION BOARD (KIT VERSION)

VIDEO DEFLECTION BOARD (WIRED VERSION)

Floppy Disk Controller

Description 6.2
User Options 6.3
Programming Data 6.7
Theory of Operation 6.21
Detailed Circuit Description 6.23
Troubleshooting 6.32
Calibration 6.34
Replacement Parts List 6.38
Semiconductor Identification 6.39
Circuit Board X-Ray View 6.49
Interconnect Pin and Signal Definitions 6.50
Schematic (Inside Envelope at rear of manual)

DESCRIPTION

The Floppy Disk Controller Card is located in the S-100 card cage in the back of the Z-100 Computer, where it operates as a slave unit on the bus.

The Card has the following features:

- A user-selectable port address.
- An IEEE 696 S-100 bus compatible interface.
- Up to four $5.25^{\prime \prime}$ drives and four $8^{\prime \prime}$ drives may be used. (Current software supports only two drives of each type.)
- Single- or double- density, single- or double-sided formats.
- Clock rates up to 5 MHz .
- Stepping rates from 3 to 30 ms .
- Independently adjustable $5^{\prime \prime}$ and $8^{\prime \prime}$ drive precompensation.
- A phase-locked loop data separator.
- The write signal for the drives is held inactive when the supply voltage drops. (However, due to variations in disk drives, write-protection of disks is not guaranteed when disks are left in the drives during power up or power down.)

USER OPTIONS

Card Clock Speed

The Floppy Disk Controller Card is supplied already configured to operate in a Z-100 Family Computer. If the Card will ever be used in a non-standard configuration, then the clock speed jumper may have to be changed as follows:

- If you will be using the Disk Controller with a CPU that operates faster than 3 MHz , no changes are required. The Card is ready for operation.
- If you will be using the Disk Controller with a CPU that operates a 3 MHz or slower, cut the indicated foil on the bottom side of the circuit board at J1 as shown in Pictorial $6-1$. Then cut and install a $1^{\prime \prime}$ bare wire. Solder the wire ends to the foils.

Pictorial 6-1

Page 6.4

USER OPTIONS

VI Lines

The Vectored Interrupt lines (VI) are properly configured to operate in a Z-100 Family Computer; no interrupt jumpers are necessary. However, if you use the Controller Card in a non-standard configuration, configure VI lines 0 through 7, as required, by installing the necessary jumper wires. The data request line (DRQ) from the 1797 is connected to holes J3 through J10, while the 1797's interrupt request line (IRQ) is connected to holes 0 through 7. The center row of holes are connected to the S-100 interrupt lines VIO through VI7, which corresponds to the 0 through 7 numbering of the IRQ holes. Connect the selected option to the proper center hole. See the following example.

Example: A jumper wire soldered from the center hole to J4 selects a data request interrupt on S-100 interrupt line V/1, while a jumper wire soldered from the center hole to 1 selects an interrupt request on S-100 interrupt line VI1. You may connect both interrupt lines to the same center hole if you desire to generate an interrupt on either DRQ or IRQ. See Pictorial 6-2.

Pictorial 6-2
Selecting Vector Interrupts

USER OPTIONS

Port Address Selection

As shown in Pictorial 6-3, the port address is selected by sections 3 through 7 of switch DS1. Switch section 7 selects the most significant bit. Z-100 Family Computers use port address B0 hex as shown.

Switch sections 0 and 1 are used to control bits 3 and 4 (with $0=$ least significant bit) of the status port, which can be read at I/O address BASE +5 . Zenith software currently uses switch section 0 for 48/96 tpi drive selection. The remaining \#2 switch position is not used.

Pictorial 6-3

USER OPTIONS

Other Options

Other jumpers may be required if you change to different type disk drives and recalibration ever becomes necessary. See the "Calibration" section of this Manual for the use of those jumpers.

PROGRAMMING DATA

This section contains reference tables and data for the programmer who wishes to write software for his Floppy Disk Controller. These tables should be used in conjunction with the 1797 disk controller data sheet (in the rear of this Manual) for complete programming information. Also, several example program segments are given at the end of this section.

I/O Port Assignments

The following chart lists the I/O Port Addresses of the Floppy Disk Controller Card, while the DIP Switch Definitions chart in Pictorial 6-4 (on Page 6.8) shows how to set the base address of the Card.

I/O Ports

I/O ADDRESS (BINARY)	PORT DESIGNATION
BASE + 0	1797 Status register (read-only)
BASE + 0	1797 Command register (writeonly)
BASE + 1	1797 Track register
BASE + 2	1797 Sector register
BASE + 3	1797 Data register
BASE + 4	Control latch (write-only)
BASE +5	Status port (read-only)
NOTE: "BASE" represent Floppy Controller's DIP sw	he address bits selected on the

PROGRAMMING DATA

Pictorial 6-4
DIP Switch Definitions

Port Bit Definitions

The definitions of the individual bits written to the 1797 ports listed above are given in the 1797 data sheet in the rear of this Manual.

The control latch bit definitions are given in the following chart. Status port bit definitions are given in the "Status Port Bit Definitions" chart.

PROGRAMMING DATA

Control Latch Bit Definitions

BIT NO.	SIGNAL NAME	FUNCTION
0,1	DSA,DSB	$00=$ Select drive 1 $01=$ Select drive 2 $10=$ Select drive 3 $11=$ Select drive 4
2	$8^{\prime \prime} / 5^{\prime \prime}$	$0=$ Select $5.25^{\prime \prime}$ $1=$ Select $8^{\prime \prime}$
3	DSEN	$0=$ Deselect all drives $1=$ Select drive specified by bits 0,1, and 2
4	PRECOMP	$0=$ Precomp on* $1=$ Precomp off $0=$ Precomp all tracks
5	(Note: Precompensation is disabled in single-	
density.)		

* Write precompensation is under software control. Heath/Zenith software precompensates tracks 23 and greater.

Page 6.10

PROGRAMMING DATA

Status Port Bit Definitions

BIT NO.	SIGNAL NAME	FUNCTION
0	INTRQ	$0=$ No interrupt request 1 = Interrupt request from 1797
1	MOTORON ($5^{\prime \prime}$)	$\begin{aligned} & 0=\text { Delay not active } \\ & \quad \text { running } \\ & 1=\text { Delay active } \end{aligned}$
2	DON'T CARE	Not defined
3*	96TPI	Set by section 0 of DIP switch on Floppy Disk Controller Card
4	DON'T CARE	Set by section 1 of DIP switch on Floppy Disk Controller Card.
5	DON'T CARE	Not defined
6	TWOSIDED	$\begin{aligned} & 0=8^{\prime \prime} \text { Diskette not } \\ & \quad \text { two-sided } \\ & 1=8^{\prime \prime} \text { Diskette two-sided } \end{aligned}$
7	DRQ	$\begin{aligned} & 0=\text { Not ready for data } \\ & \text { transfer } \\ & 1= \text { Ready for data } \\ & \text { transfer } \end{aligned}$

* $0=5.25$ " drives are 48 tpi
$1=5.25$ " drives are 96 tpi

Precompensation Options

The following chart lists the signal and jumper requirements to implement the desired write precompensation options for each type of diskette format.

Signal and Jumper Requirements

TYPE OF DRIVE	NO TRACKS	ALL TRACKS	TRACKS >43
$8^{\prime \prime}$ Double-Density	N/A	$\begin{aligned} & \overline{\text { PRECOMP }}=0 \\ & \mathrm{JO}=\mathrm{X} \end{aligned}$	$\begin{aligned} & \overline{\text { PRECOMP }}=1 \\ & \mathrm{~J} 0=\mathrm{X} \end{aligned}$
$5.25^{\prime \prime}, 48 \mathrm{tpi}$, Double-Density	$\begin{aligned} & \overline{\text { PRECOMP }}=1 \\ & \mathrm{~J} 0=\mathrm{X} \end{aligned}$	$\begin{aligned} & \overline{\text { PRECOMP }}=0 \\ & \mathrm{~J} 0=\mathrm{X} \end{aligned}$	N/A
5.25", 96 tpi, Double-Density	$\begin{aligned} & \overline{\text { PRECOMP }}=1 \\ & \mathrm{~J} 0=\text { INSTALLED } \end{aligned}$	$\begin{aligned} & \overline{\text { PRECOMP }}=0 \\ & \mathrm{~J} 0=\mathrm{X} \end{aligned}$	$\begin{aligned} & \overline{\text { PRECOMP }}=1 \\ & \mathrm{JO}=\mathrm{OUT} \end{aligned}$

NOTE: $\overline{\text { PRECOMP }}$ is bit 4 of the control latch, X is a "Don't Care," and precompensation is automatically disabled in single-density operation. JO is a jumper option on the board that is normally not installed (out).

Track Formats

The recommended track formats for $5.25^{\prime \prime}$ drives are:
Single-Density: Ten 256-byte sectors per track Double-Density: Eight 512-byte sectors per track

PROGRAMMING DATA

The recommended track formats for $8^{\prime \prime}$ drives are:
Single-Density: Twenty-six 128-byte sectors per track
Double-Density: Twenty-six 256-byte sectors per track Extended Density: Eight 1024-byte sectors per track (Z-DOS)
(We recommend that track 0 , side 0 of a double-density $8^{\prime \prime}$ diskette be recorded in single-density in compliance with the IBM double-density format.)

Zenith software conventions currently use the Card's DIP switch section 0 (status port bit 3) to specify $5.25^{\prime \prime}$ drive's track density ($0=48$ tpi, $1=96$ tpi $)$.

Interleaving Factors

The Card can read physically contiguous sectors, and sector interleaving is not required with standard Heath/Zenith systems. Custom applications may require interleaving. It is also possible to implement other formats with 128-, 256-, 512-, or 1024- byte sector sizes in custom applications.

PROGRAMMING DATA

Drive Interface Connectors

5-1/4" Drive Connector (P2)

NOTE: All signals are active low at the connectors.

PIN No.		DESCRIPTION	
1		GND	
2	(NC)	Active read filter	
3		GND	
4	(NC)	TD use control	
5		GND	
6		Drive select 3	
7		GND	
8		Index/sector	
9		GND	-
10		Drive select 0	- 1
11		GND	\wedge -
12		Drive select 1	T- ${ }^{2}$
13		GND	\%
14		Drive select 2	${ }_{1}$
15		GND	P2 CONNECTOR
16		Motor on	
17		GND	
18		Direction select	
19		GND	
20		Step	
21		GND	
22		Composite write data	
23		GND	
24		Write gate	
25		GND	
26		Track 0	
27		GND	
28		Write protected	
29		GND	
30		Composite read data	
31		GND	
32		Side one select	
33		GND	
34	(NC)	Disk change	

(NC) -- No Connection. These pins are not used by the Controller Card.

PROGRAMMING DATA

Drive Interface Connectors

8" Drive Connector (P1)

NOTE: All signals are active low at the connector.

(NC) -- No Connection. These pins are not used by the Controller Card.

PROGRAMMING DATA

S-100 BUS CONNECTOR

PIN No.	SIGNAL	PIN No.	SIGNAL	$\begin{aligned} & \text { PIN } \\ & \text { No } \end{aligned}$	S SIGNAL
1	+ 8 volts	35	DO1/Data Out 1	69	(NC)RFU
2	+16 volts	36	DO0/Data Out 0	70	GND
3	(NC)XRDY	37	(NC)A10	71	(NC)RFU
4	VIO*	38	DO4/Data Out 4	72	RDY
5	VI1*	39	DO5/Data Out 5	73	(NC) ${ }^{\text {NT* }}$
6	VI2*	40	DO6/Data Out 6	74	(NC)HOLD*
7	VI3*	41	DI2/Data In 2	75	RESET*
8	V14*	42	DI3/Data $\ln 3$	76	pSYNC
9	VI5*	43	DI7/Data $\ln 7$	77	pWR*
10	VI6*	44	(NC) sM 1	78	pDBIN
11	VI7*	45	sOUT	79	A0
12	(NC) NMI^{*}	46	sINP	80	A1
13	(NC)PWRFAIL*	47	(NC)sMEMR	81	A2
14	(NC)DMA3*	48	(NC)sHLTA	82	A6
15	(NC)A18	49	(NC) Clock	83	A7
16	(NC)A16	50	GND	84	(NC)A8
17	(NC)A17	51	+ 8 volts	85	(NC)A13
18	(NC)SDSB*	52	(NC) -16 volts	86	(NC)A14
19	(NC)CDSB*	53	GND	87	(NC)A11
20	GND	54	(NC)Slave CLR*	88	DO2/Data Out 2
21	(NC)(8088/8085)	55	(NC)DMAO*	89	DO3/Data Out 3
22	(NC)ADSB*	56	(NC)DMA1*	90	DO7/Data Out 7
23	(NC)DODSB*	57	(NC)DMA2*	91	DI4/Data in 4
24	Φ	58	(NC)sXTRQ*	92	DI5/Data $\ln 5$
25	pSTVAL*	59	(NC)A19	93	DI6/Data $\ln 6$
26	(NC) pHLDA	60	(NC)SIXTN*	94	DI1/Data $\ln 7$
27	(NC) RFU	61	(NC)A20	95	DIO/Data $\ln 0$
28	(NC) RFU	62	(NC)A21	96	(NC)sINTA
29	A5	63	(NC)A22	97	(NC)sWO*
30	A4	64	(NC) A 23	98	(NC)ERROR*
31	A3	65	(NC) NDEF	99	(NC)POC*
32	(NC)A15	66	(NC) NDEF	100	GND
33	(NC)A12	67	(NC)PHANTOM*		
34	(NC)A9	68	(NC)MWRT		

(NC) -- No Connection. These pins are not used by the Controller Card.

PROGRAMMING DATA

Sample Programs

```
SHOWN HERE ARE EXAMPLES OF THE TYPE OF ASSEMBLY LANGUAGE CODE
REQUIRED FOR COMMON OPERATIONS WITH THE H/Z-2OT DISK CONTROLLER
; IN ALL CASES, IT IS ASSUMED THAT THE DRIVE, DENSITY AND PRECOMP
; HAVE BEEN SELECTED AND THAT WAIT STATES ARE ENABLED PRIOR TO ANY
; ATTEMPT TO READ/WRITE/SEEK A PARTICULAR DRIVE THROUGH A WRITE OF
; THE APPROPRIATE DATA TO THE H/Z-207 CONTROL PORT (FDCON).
;
; H/Z-207 I/O PORTS
```

OOB0 $=$	BASE	EQU	OBOH	; BASE CONTROLLER PORT
OOBO $=$	FDCMD	EQU	BASE	; 1797 COMMAND PORT
00B0 $=$	FDSTA	EQU	BASE	; 1797 STATUS PORT
0081 $=$	FDTRK	EQU	BASE+ 1	; 1797 TRACK REGISTER
00B2 $=$	FDSEC	EQU	BASE+2	; 1797 SECTOR REGISTER
00B3 $=$	FDDAT	EQU	BASE+3	; 1797 data register
00B4 $=$	FDCON	EQU	BASE+4	;OUTPUT ONLY CONTROL PORT
00B5 =	FDAS	EQU	BASE+5	;INPUT ONLY AUX STATUS PORT
; BIT DEFINITIONS FOR FDCON				
$0004=$	CONDS8	EQU	04H	;8"/5" DRIVE SELECT
$0008=$	CONDSEN	EQU	08H	; $0=$ DESELECT ALL DRIVES
$0010=$	CONPC	EQU	10 H	; WRITE PRECOMP BIT
				5", 0=PRECOMP ON, $1=\mathrm{OFF}$, ALL TRKS 8", $0=0 \mathrm{ON}, 1=\mathrm{OFF}, \mathrm{TKS} 0-43$ ONLY 8" TKS > 43 ARE ALWAYS ON.
$0020=$	CON5FS	EQU	20 H	;0=NORMAL, 1 USES 8' 1797 CLOCK FOR 5' DRIVES
$0040=$	CONWE	EQU	40 H	; $1=$ WAIT STATES ENABLED FOR DRQ/IRQ
$0080=$	CONSD	EQU	80 H	;DENSITY SELECT, $0=$ DBL (MFM) , $1=$ SGL (FM)
	;			
	; BIT DEFINITIONS FOR FDAS			
$0001=$; ASIRQ	EQU	01H	- IRQ LINE FROM 1797
$0002=$	ASMO	EQU	02H	MOTOR ON LINE (FOR5" DRIVES)
$0008=$	ASDS 1	EQU	08H	DIP SWITCH INPUT, SECTION 0
$0010=$	ASDS2	EQU	10 H	;DIP SWITCH INPUT, SECTION 1
$0040=$	AS2S	EQU	40 H	; DOUBLE SIDED SIGNAL FROM $8^{\prime \prime}$ DRIVES

S100-BUS CONNECTION

BLOCK DIAGRAM

PROGRAMMING DATA

Read a Sector

```
READ A SECTOR
IT IS ASSUMED THAT THE FLOPPY DISK HEAD HAS BEEN POSITIONED OVER THE DESIRED TRACK OF THE FLOPPY DISK PREVIOUSLY AND THAT THE TRACK NUMBER IS IN THE 1797 TRACK REGISTER (SEE THE "SEEK DESIRED TRACK" EXAMPLE PAGE 6.18). THE SECTOR TO BE READ IS TO BE PLACED INTO A BUFFER CALLED BUFF. THE SECTOR SIZE MUST MATCH THE SECTOR SIZE AS INDICATED BY THE BYTE WRITTEN INTO THE SECTOR HEADER WHEN THE DISK WAS FORMATTED. IN THIS EXAMPLE, THE READ COMMAND IS HARD-CODED AS 88H, WHICH IS A SINGLE SECTOR READ WITH NO HEAD LOAD DELAY ON SIDE ZERO USING IBM COMPATIBLE SECTOR LENGTH FIELDS. VARIOUS BITS IN THE READ COMMAND ALTER THESE PARAMETERS - SEE THE 1797 DATA SHEETS. IN TYPICAL APPLICATIONS, IT WILL BE NECESSARY TO "COMPUTE" THE READ COMMAND AS PART OF THE READ SECTOR CODE, PARTICULARLY WITH RESPECT TO THE HEAD LOAD DELAY AND SIDE SELECT BITS.
CAUTION MUST BE USED WHEN APPLYING THE CODE BELOW TO DOUBLE-DENSITY \(8^{\prime \prime}\) DISKS WITH SLOW CPU'S. THE LOOP USED TO READ A SECTOR REQUIRES APPROX 45 CLOCK CYCLES. ONLY ABOUT 12 MICROSECONDS PER BYTE ARE AVAILABLE WITH 8" DOUBLE-DENSITY DISKS. THIS CODE WILL WORK WITH FAST PROCESSORS, BUT TROUBLE WILL ARISE IF AN ATTEMPT IS MADE TO USE THIS WITH A SLOW CPU (FOR EXAMPLE, TO GET 40 CLOCK CYCLES FROM A 2MHZ 8080 TAKES 20 MICROSECONDS, WHICH IS MORE THAN THE 12 MICROSECONDS AVAILABLE). FOR SECTOR SIZES OF 256 BYTES OR LESS, THE TEST FOR END OF SECTOR MAY BE SHORTENED. ALTERNATELY, THE TEST MAY BE OMITTED AND AN IRQ INTERRUPT USED TO SIGNAL END OF SECTOR. ON Z-80 AND 8088 PROCESSORS THE PROCESS MAY ALSO BE SHORTENED BY USING BLOCK I/O AND LOOP INSTRUCTIONS.
```


PROGRAMMING DATA

PROGRAMMING DATA

Write a Sector

PROGRAMMING DATA

Seek a Track

THEORY OF OPERATION

Refer to the Block Diagram (Fold-out from Page 6.16), as you read the following description.

The Block Diagram of the Floppy Disk Controller Card consists of seven parts: the bus interface, the status port, the control latch, the 1797 floppy disk controller, the data separation and write precompensation circuitry, and the two drive interfaces.

Bus Interface

The bus interface meets the proposed IEEE 696 standard for an S-100 bus. The bus interface is made up of a connector, two octal bus buffers, an octal tri-state latch, an address comparator, and some miscellaneous enabling circuitry.

Status Port

The status port is a read-only device that tells the CPU the status of the disk drives and the controller. Definitions of the status port bits are listed in the detailed circuit description.

THEORY OF OPERATION

Control Latch

The control latch accepts commands to the disk drives such as DRIVE SELECT, $5^{\prime \prime}$ FASTEP, and others that have to do with the selection and mode of the drives. Definitions of the control bits are listed in the detailed circuit description.

1797 Controller

The 1797 controls the placement of information on the diskette. That is, the movement of the drive head, the formation of written data, and the separation of the read data is controlled by the 1797.

Data Separation and Precomp

The data separation and write precompensation circuitry separate data from the clock signal during read operations and precompensate data during double-density write operations.

Drive Interfaces

The $8^{\prime \prime}$ and $5.25^{\prime \prime}$ drive interfaces include buffers and filter circuitry.

DETAILED CIRCUIT DESCRIPTION

Before you read the rest of this section, you should review the data sheets for the 1797, 1691, and 2143 integrated circuits in Appendix D. Then refer to the schematic drawing while you read the following information.

S-100 Bus Interface

The S-100 bus interface is compatible with any IEEE 696 S100 bus. (The bus signal lines are defined in the rear of this Section.)

Data In

Data in to the bus (output from the Card) travels through signal lines 91-95 and signal lines 41-43 on the bus interface connector. These pins are used in read operations from the status latch or from the 1797 controller. The data is buffered from the Card's internal data bus to the S-100 bus by means of U36, a 74LS244 buffer.

Data Out

Data out from the bus (into the Card) travels through pins $35,36,38,39,40,88,89$, and 90 on the bus interface connector. This data is latched by tri-state latch U35. The latch is used because data on an S-100 bus is not held long enough for the 1797 to receive properly. The tri-state latch holds the data on the Card's internal data bus so that the 1797 can read it. Valid data is latched in U35 on every write cycle. The latch is enabled through pin 1 when the ALE (Address Latch Enable) signal latches an asserted sOUT (Status Out) signal via U20.

DETAILED CIRCUIT DESCRIPTION

Address Lines

The address lines from the bus enter the Card through pins 29-31 and 79-83 of the bus interface. They are buffered by the 74LS244 IC, U34.

Control Lines

The control lines from the S-100 bus enter the board through pins $24,25,45,46$, and $75-78$ of the bus interface. These lines are buffered by U33.

Vector Interrupt Lines

The vector interrupt lines from the bus leave the Card through pins 4 through 11 of the bus interface. They may be driven by U32.

Ready Line

The ready line, RDY, exits through 72 of the bus interface. The line is driven by U32.

Power Up

On power up, the CPU sends a RESET signal to the Floppy Disk Controller Card. This places the 1797 controller, the control latch, the write precompensation control, and the U26 flipflops in a known state before operation of the Card is attempted.

DETAILED CIRCUIT DESCRIPTION

The reset state for the 1797 is a 03 H in the command register, a 01 H in the sector register, a 0 in the Not Ready bit (bit 7) of the status register, and a restore command execution. The reset state of the control latch makes all outputs of the latch equal to 0 . For the phase lock loop control, the reset state makes the phase four (phi 4) input equal to 0.

Next, the U26 Q outputs are set to 1 , which sends an RDY (ready) signal to the CPU and which provides part of the qualification needed for Read and Write enabling through AND gate D of U27.

Also on power up, the WG (write gate) output from the 1797 to the $5.25^{\prime \prime}$ and $8^{\prime \prime}$ drives is kept high by Q2 and Q3 until the supply voltage is at or above 4 volts at R25. When the supply reaches 4 volts, Q2 and Q3 are biased near their operating region and will conduct when WG is made active at the 1797. This circuitry is designed to prevent accidental writing on diskettes if they are left in the drives when the power is turned on or off. However, diskettes should still not be left in the drives when the power is switched on or off because there is no guarantee that the drives will not accidentally write onto a diskette, without regard to the state of the write gate line.

Read and Write Functions

Reading and writing with the Floppy Disk Controller Card involves transferring three types of information: data which can be read or written, status signals, and control signals. Status signals can only be read and control signals can only be written.

DETAILED CIRCUIT DESCRIPTION

Read Status Latch (U31)

Assume that a status signal needs to be read. There are two sources of status information for the S-100 bus, the status port and the status register in the 1797. To read the status port, the following happens. The Card is selected by the CPU, which does this by placing the address of the Card on address lines A0-A7. Address lines A3-A7 are checked by the address comparator U29 for the proper address. (The proper address is defined by the user by setting DIP switch DS1.) If the address is proper, U29's EOUT signal is activated on U29's pin 19.

The EOUT signal is gated in U28, NOR gate D, with signal I/O. If signal I/O is low, indicating that the sINP (input) signal or sOUT (status output) signal from the CPU is also present, the simultaneous assertion of EOUT and I/O signals are passed to U20B, a flip-flop whose Q and \bar{Q} outputs are asserted when the Address Latch Enable (ALE) signal clocks its pins 3 and 11.

The Q output of U20B is ANDed in U27, NAND gate C, with pDBIN, the S-100 data input control signal at pin 78 of the bus interface. The output at pin 8 of U 27 becomes low, indicating that the Floppy Disk Controller Card is being read by the CPU, and activates the enable 1 line of the status latch, U31.

The status latch still can not be read until the status port select line (STPS) is asserted at pin 15 of U31. The enable line is activated by U 17 , the I/O address decoder.

The I/O address decoder activates STPS by decoding address line A0, A1, and A2. If A0 and A1 are low and A2 is high, and if BDSEL or card select is active, the U31's Y1 line is made active. U31 then outputs its status word to the Card's internal data bus, where it is buffered by U36 to the S-100 bus.

Read Status Register of 1797 (U22)

Assume now that the 1797's status register is to be read. The procedure is the same as the above, except that address lines A0, A1, and A2 are low. Because the address bits A0-A2 are different, the I/O address decoder (U17) does not enable the status latch (U31). Instead, the status register of the 1797 is selected and read onto the data bus.

Write Control Latch (U30)

The control latch is written at the falling edge of CLEN, which is the simultaneous assertion of pWR and the Y0 output of the I/O address decoder. The pWR signal comes directly from the CPU, and the Y0 signal occurs when A0, A1, and A2 are high, low, and high, respectively. The YO and $p W R$ signals are ANDed by U21, gate B. When both Y0 and pWR are active, gate B produces an active low clock, whose trailing edge activates U30.

The control latch receives the control byte from the internal data bus. The control byte is cleared in U30 by a RESET signal from the CPU.

When the WAITEN bit in the control latch is active, a wait state is initiated on the next read or write of the data register. This puts the CPU in a wait state (negates the RDY signal on the S-100 Bus) until DRQ is generated by the disk controller. Upon DRQ becoming active, an additional delay is needed to fulfill the access time requirements of the 1797 Controller IC. The access delay and synchronization to the $\mathrm{S}-100$ bus are both accomplished by counting system clocks. An onboard jumper selects whether three system clocks are counted (for systems with clocks up to 3 MHz) or two system clocks are counted (for systems with clocks up to 5 MHz).

At the completion of the access delay, the wait state is cleared, RDY is asserted, and the CPU completes the read or write of the data register in the 1797. A RESET or an INTRQ signal also clears the wait state, so that the CPU does not hang up after an error during a disk access.

Write Command Register in 1797 (U22)

The command register in the 1797 can be written when A0, A1, and A2 are all low. The FDWR signal is made active when both FDEN and pWR are active low. The signal pWR comes directly from the CPU, while FDEN is a composite signal made up of the FDSEL signal and the signal that starts the access of the 1797 controller at the end of the wait state.

Data Read/Write Operations

WRITE OPERATIONS. The Card is enabled by the proper address and by pWR. After the proper control words are sent to select the power drive, address lines AO and A1 are made high and A2 is made low, connecting the data register of the 1797 to the internal data bus. As long as A0 and A1 are high and A2 and FDWR are low, the data from the S-100 bus will go to the 1797 data register and be sifted out serially with clock pulses inserted between bits on pin 31, and WD line. The track and sector registers of the 1797 hold the location where the data is written on the diskette.

READ OPERATIONS. A read operation requires the board to be enabled as described earlier. All steps taken to enable the status port are taken except that the I/O address decoder does not enable the status latch because the address provided by the CPU is not correct for a status read from the latch. Instead, the address lines cause the 1797 to dump the bits in its data register onto the Floppy Disk Controller Card's internal data bus, which connects to the U36 buffer and the S-100 bus.

DETAILED CIRCUIT DESCRIPTION

The 1797 fills its data register from the data shift register, which fills serially from the processed RAWDATA data stream. (RAWREAD data processing is discussed in "Data Separation and Precompensation" on Page 6.30.)

RDY Delay

U19 is a quad flip flop that acts as a delay line for the DRQ signal from the 1797 to the RDY line to the CPU at pin 72 of the S-100 bus interface. The input at D1, pin 4 of U19 is output at Q1 after one clock cycle. Q1 is tied to D2 and is output to Q2 after another clock cycle. Q2 is also tied to U25, gate A, and D3. From gate A, the D2 signal presets flip flop U26, part A. Flip flop U26 qualifies the FDSEL signal to enable read/write operations in anticipation of the RDY line being made active.

From D3 of U19, the DRQ signal is output to Q3, which is connected to D4 and to jumper J1, post G. Post G is connected to post F in $3-\mathrm{MHz}$ operations, which do not need additional delay of the DRQ signal. Instead, the output of Q4, which contains the DRQ signal delayed by three to four clock cycles, is connected to jumper J 1 , post E . For most $6-\mathrm{MHz}$ operation, J1 is connected between post E and post F. For the Z-100 series of Computers, the Computer's internal timing requires that the $6-\mathrm{MHz}$ jumper be used.

Data Shaping

Data pulses to the drive are reshaped by U16, a one-shot multivibrator, to 400 ns . Raw data from the drive is reshaped to 250 ns .

DETAILED CIRCUIT DESCRIPTION

Data Separation and Precompensation

Data separation and precompensation are performed primarily by U1, U3, U5, U4, U16, and U22. Almost all of these two functions are internal to these IC's. Therefore, an understanding of the functions requires a careful study of the IC's data sheets.

The only control a user has over the precompensation functions is in the amount of precompensation involved. You can exercise this control by adjusting R3 and R4.

Interrupts

There are two interrupts that the Floppy Disk Controller Card can generate: the interrupt request (INTRQ) and the data request (DRQ). Both of these interrupts originate from the 1797. The INTRQ signal is sent to indicate a command completion or an error. The DRQ signal is sent to indicate that data will be accepted in response to a disk read or write command.

The interrupts can be detected two ways, as either a vectored interrupt on any of the bus interface pins from 4 to 11, or as a bit set in the status port, U31, which can then be polled by the CPU.

The INTRQ signal also pulls the bus out of an error-caused wait state by making the pin 5 Q output of U26, part A, high.

Drive Interfaces

There are two drive interfaces: one for the $8^{\prime \prime}$ drives and one for the $5.25^{\prime \prime}$ drives.

DETAILED CIRCUIT DESCRIPTION

8" Drive Interface

The $8^{\prime \prime}$ drive interface, which is designed for use with a standard 50-pin Shugart-compatable (SA801 or SA851) disk drive, connects to the drives cable through P1. All output signals to the drives are buffered through U8 and U10 except WG and HEADLOAD. The WG signal is sent through transistor Q2, as described in "Power Up" on Page 6.24. The HEADLOAD signal is inverted by the U7 NOR gate C before being transmitted to the drives.

All input signals except READY and TWOSIDED are buffered through U9, part A, when part A is enabled by a high on the $8^{\prime \prime} / 5^{\prime \prime}$ line. The READY signal is inverted by U6 NAND gate B, while the TWOSIDED signal is inverted by U6 NAND gate D .

5.25" Drive Interface

The $5.25^{\prime \prime}$ drive interface connects to the drive cable through the P2. All output signals to the drives are buffered through U11 and U10 except WG and MOTOR. The WG signal is sent through Q3, while MOTOR is sent through U7 gate B, a NOR gate that conducts when either the MOTOR or the MOTOR ON DELAY signal is active. (The MOTOR ON DELAY signal keeps the motor running on a drive after the drive access operation is completed, under the assumption that the first access will be followed shortly by another access. This saves the time it would take for the drive motor to come to speed after it has been selected and before it can be accessed.)

All input signals are buffered through U9, part B, when part B is enabled by the $8^{\prime \prime} / 5^{\prime \prime}$ line.

TROUBLESHOOTING

In case of improper operation, check the following items:

- Is a diskette installed in the drive?
- Are all of the cables connected properly at each end?
- Are the jumpers on the Disk Controller Card connected properly?
- Is the Disk Controller Card seated properly in the socket?

If the answer to all of the above questions is yes, and the Card still does not work properly, then you should call:

- Your local Zenith Data Systems Dealer;
or
- The nearest Authorized Zenith Data Systems Service Center (check the list accompanying this product or look in the yellow pages under "Data Processing Equipment");
or
- The nearest Heathkit Customer Center;
or
- Zenith Data Systems, Customer Service Assistance, at (312) 671-7550.

> IMPORTANT: Be prepared to furnish the following information. It will be helpful in diagnosing and repairing your unit.
A. The problem you are having.
B. The name and model of your computer system.
C. The system configuration.
D. Any additional information that will help describe your system.

Troubleshooting Chart

If you want to service your Card yourself instead of sending it to Zenith or Heath for servicing, check the chart below for possible causes to the problems your Card may be having.

PROBLEM	POSSIbLE CAUSE
Drive access light does not turn on when diskette is booted.	1. Check for proper connections of floppy cable inside Computer. 2. Check for correct placement of Disk Controller in bus connector. 3. Be sure DIP switch on Disk Controller is set at the correct address. 4. Check positions of P1 and P2 on the Disk Controller. 5. Be sure drive 1 is jumpered for drive 1 selection. 6. Verify a properly configured and compatible disk drive.
All diskette access lights turn on and remain on.	1. Drive cable is connected with marked edge on the wrong side. 2. Drives configured incorrectly.
Two drives turn on when a boot operation is selected.	1. Two drives have their selection jumpers programmed the same.
Computer will not accept boot command, returns to hand prompt, or stans to boot but does not return to hand prompt without reset.	1. Be sure diskette is bootable. 2. Be sure diskette is installed in selected drive before boot command is given. 3. Be sure DIP siwtch on Disk Controller is set at the correct address. 4. Be sure drive 1 is jumpered for drive 1 selection. 5. Be sure DIP switch bits 0 and 1 are selected for the type of drive being used.

CALIBRATION

If you have an assembled Disk Controlier Card, it has been calibrated at the factory to operate properly with Zenith Data Systems (ZDS) and Heath disk drives. Therefore, if you are using ZDS/Heath Equipment, you probably will not need to recalibrate your assembled Controller Card. However, if your Card is accidentally uncalibrated, or if you are not using ZDS/ Heath equipment, follow the procedures below.

Equipment Needed

You will need the following equipment to most precisely calibrate your Disk Controller Card:

- A digital voltmeter (DVM) with at least a four-digit readout.
- A 10 MHz bandwidth, calibrated, laboratory-quality oscilloscope with a sweep speed of 50 ns ./division and a vertical deflection of $2 \mathrm{~V} /$ division, and a low capacitance (X10) probe.
- A frequency counter capable of six-digit accuracy at 4 MHz .
- A blank $8^{\prime \prime}$ diskette (or a $5.25^{\prime \prime}$ diskette if you are using only $5.25^{\prime \prime}$ drives in your system).

Precompensation Calibration

Usually, two values of precompensation are needed: one for 5.25 " drives and one for $8^{\prime \prime}$ drives. Accordingly, there are two precompensation adjustment screws on the Disk Controller Card. Potentionmeter R4 is used to set the higher value of precompensation, and potentionmeter R3 is used to set the lower value of precompensation. Pictorial 6-5 (Fold-out from Page 6.34), shows the locations of these two potentionmeters.

PICTORIAL 6-5

Calibration Locations

CALIBRATION

Jumper J2 selects whether the 5.25 " or the $8^{\prime \prime}$ drive will receive the lower value of precompensation. Pictorial 6-5 shows the location of J2 on the Card.

Perform the calibration as follows:

1. Turn the Computer off and remove the Disk Controller Card.
2. Turn R3 fully counterclockwise and R4 fully clockwise.
3. Insert the Disk Controller into the S-100 bus and turn the power on. Allow the Computer to warm up for five minutes.
4. Attach the oscilloscope's probe to CP3 and the probe's ground clip to GND. See Pictorial 6-5.
5. Determine the values of write precompensation that the $5.25^{\prime \prime}$ and $8^{\prime \prime}$ drives need (the manufacturers of the drives should supply this information with their product). If the value of precompensation is higher for the 5.25" drives, or if you only have $5.25^{\prime \prime}$ drives, go to Step 9. If the value of precompensation is higher for the $8^{\prime \prime}$ drives, or if you have only $8^{\prime \prime}$ drives, go to Step 6. All Heath/Zenith floppy drives require 120 ns of write precompensation.
6. Format a blank $8^{\prime \prime}$ diskette in any of the $8^{\prime \prime}$ drives by running the FORMAT program provided on your operating system diskette.
7. While FORMAT is running, turn R3 to adjust the pulse width displayed on the oscilloscope to the value of write precompensation needed by your $8^{\prime \prime}$ drives. If you do not have 5.25" drives, you have completed the precompensation calibration; proceed to "Data Separator Calibration". If you do have $5.25^{\prime \prime}$ drives, continue with the next step.

CALIBRATION

8. Format the $5.25^{\prime \prime}$ diskette. While FORMAT is running, turn R4 to adjust the pulse width displayed on the oscilloscope to the value of write precompensation needed by your 5.25" drives. Proceed now to Step 15.
9. If you have both $5.25^{\prime \prime}$ and $8^{\prime \prime}$ drives, perform the next step. If you have $5.25^{\prime \prime}$ drives only, go to Step 11 .
10. Cut the foil on the circuit board that connects the middle hole of J2 to the " $8<5$ " hole, the location of which is shown in Pictorial 6-5.
11. Format a blank $5.25^{\prime \prime}$ diskette in any of the $5.25^{\prime \prime}$ drives by running the FORMAT program provided on your operating system diskette.
12. While FORMAT is running, turn R3 to adjust the pulse width displayed on the oscilloscope to the value of write precompensation needed by your $5.25^{\prime \prime}$ drives. If you do not have $8^{\prime \prime}$ drives, you have completed the precompensation calibration; proceed to "Data Separator Calibration." If you do have $8^{\prime \prime}$ drives, go to the next step.
13. Format the blank $8^{\prime \prime}$ diskette.
14. While FORMAT Is running, turn R4 to adjust the pulse width displayed on the oscilloscope to the value of write precompensation needed by your $8^{\prime \prime}$ drives.
15. Remove the oscilloscope probe.

This completes the precompensation calibration.

CALIBRATION

Data Separator Calibration

Perform the calibration as follows:

1. Turn the Computer on. Allow at least five minutes for the Disk Controller Card to reach operating temperature.
2. Make sure the disk drives are not selected.
3. Set the DVM's voltage range to 2 V . Attach the common lead to GND and the positive lead to CP2.
4. Adjust R2 (shown in Pictorial 6-5) for a reading of 1.400 V.
5. Remove the voltmeter test leads.
6. Set the six-digit frequency counter to count 4 MHz .
7. Attach the shield lead to GND and the signal lead to CP1.
8. Adjust R1 (shown in Pictorial 6-5) for a reading of 4.000 MHz.
9. Repeat Steps 2 through 8 until there is no further improvement and the 1.4 V and 4 MHz readings occur simultaneously. There will be some (but not much) interaction between these adjustments.
10. Remove the test leads and turn the Computer off.

This completes the calibration procedure.
NOTE: Format the blank diskettes used in this procedure again before you use them for recording files.

REPLACEMENT PARTS LIST

CIRCUIT	HEATH Comp. No.	DESA No.

Resistors

All resistors are $1 / 4 \mathrm{~W}, 5 \%$, unless specified otherwise.

R1	$10-1154$	$10 \mathrm{k} \Omega$ variable, $1 / 2 \mathrm{~W}, 10 \%$
RP1	$9-106$	$10 \mathrm{k} \Omega$ resistor pack, 5 W
R2	$10-1180$	$100 \mathrm{k} \Omega$ variable, $1 / 2 \mathrm{~W}, 10 \%$
RP2	$9-119$	$10 \mathrm{k} \Omega$ resistor pack, 5 W
R3	$10-1137$	2000Ω variable, $3 / 4 \mathrm{~W}, 20 \%$
RP3-RP4	$9-120$	150Ω resistor pack
R4	$10-1137$	2000Ω control
R5	$6-470-12$	47Ω
R6	NOT USED	
R7	$6-2540-12$	$47 \mathrm{k} \Omega, 1 \%$
R8	NOT USED	
R9	$6-105-12$	$1 \mathrm{M} \Omega$
R10	$6-102-12$	1000Ω
R11	$6-392-12$	3900Ω
R12	$6-185-12$	1800Ω
R13	$6-2502-12$	$47 \mathrm{k} \Omega, 1 \%$
R14	NOT USED	
R15	$6-7200-12$	$720 \Omega, 1 \%$
R16-R17	$6-2502-12$	$25 \mathrm{k} \Omega, 1 \%$
R18	$6-124-12$	$120 \mathrm{k} \Omega$
R19	$6-2370-12$	$237 \Omega, 1 \%$
R20	$6-105-12$	$1 \mathrm{M} \Omega$
R21	$6-392-12$	$3900 \Omega, 1 \%$
R22	$6-1001-12$	$2200 \Omega, 1 \%$
R23	$6-102-12$	1000Ω
R24	$6-124-12$	$120 \mathrm{k} \Omega$
R24A-R24B	$6-101-12$	100Ω
R25-R26	$6-102-12$	1000Ω
R 2		

Capacitors

C1	$25-197$	$1 \mu \mathrm{~F}$ tantalum
C2	NOT USED	
C3	$29-71$	$.47 \mu \mathrm{~F}, 100 \mathrm{~V}, 1 \%$

CIRCUIT	HEATH	DESCRIPTION
Comp. No.	Part No.	

Capacitors (cont'd)

C4-C6	$25-220$	$10 \mu \mathrm{~F}$ tantalum
C7-C8	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C9-C25	$21-785$	$22 \mu \mathrm{~F}$ ceramic
C26	$25-197$	$1 \mu \mathrm{~F}$ tantalum
C27-C28	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C29	$20-709$	36 F
C30	$25-921$	$47 \mu \mathrm{~F}$ tantalum
C31-C34	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C35	$25-220$	$10 \mu \mathrm{~F}$ tantalum
C36-C37	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C38-C39	$21-746$	180 pF
C40-C47	$21-762$	$.1 \mu \mathrm{~F}$ ceramic
C48	$21-197$	$1 \mu \mathrm{~F}$ tantalum
C49	$25-220$	$10 \mu \mathrm{~F}$ tantalum
C50-C63	$21-762$	$.1 \mu \mathrm{~F}$ ceramic

Inductors

L1	235-229	$35 \mu \mathrm{H}$
L2-L18	$475-31$	$1.22 \mu \mathrm{H}$
L19-L23	$235-229$	$35 \mu \mathrm{H}$

Crystal Oscillator

U18 150-132 4 MHz

Semiconductors

See "Semiconductor Identification"

SEMICONDUCTOR IDENTIFICATION

This section is divided into two parts; "Component Number Index" and Part Number Index." The first section provides a cross-reference between semiconductor component numbers and their respective Part Numbers. The component numbers are listed in numerical order. The second section provides a lead configuration detail (basing diagram) for each semiconductor Part Number. The Part Numbers in the second section are also listed in numerical order.

Component Number Index

This index shows the Part Number of each semiconductor.

CIRCUIT COMPONENT NUMBER	HEATH PART NUMBER	CIRCUIT COMPONENT NUMBER	HEATH PART NUMBER
D1-D3	56-84	U21	443-875
Q1	417-246	U22	443-997
Q2	417-937	U23	443-798
Q3	417-937	U24	443-877
U1	443-998	U25	443-800
U2	NOT USED	U26	443-900
U3	443-1000	U27	443-728
U4	443-730	U28	443-779
U5	443-999	U29	443-971
U6	443-792	U30	443-805
U7	443-1063	U31	443-1039
U8	443-72	U32	443-72
U9	443-824	U33	443-791
U10	443-753	U34	443-791
U11	443-72	U35	443-863
U12	443-730	U36	443-791
U13	443-811	PS1	442-54
U14	443-730	PS2	442-663
U15	443-1040	PS3	442-708
U16	443-1040		
U17	443-877		
U18	4 MHz oscillator		
U19	443-752		
U20	443-730		

SEMICONDUCTOR IDENTIFICATION

Part Number Index

This index shows a lead configuration detail (basing diagram) of each semiconductor part number.

Diodes

HEATH PART NUMBER	MAYBE REPLACED WITH	DESCRIPTION	LEADCONFIGURATION (TOP VIEW)

Transistors

HEATH PART NUMBER	MAYBE REPLACED WITH	DESCRIPTION	LEADCONFIGURATION (TOP VIEW)
417-246	TIS74	FET	
417-937	MPS2369	$\begin{aligned} & 200 \mathrm{~mA} 15 \mathrm{~V} \\ & \text { NPN SILICON } \end{aligned}$	

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits

HEATH PART NUMBER	MAYBE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
442-54	UA 7805	+5VREGULATOR	
442-663	LM78M12	+ 12VREGULATOR	IN COM OUT COM OUT
442-708	LM 2904	ADJUSTABLE REGULATOR	
443-72	SN 7417	HEX BUFFERS	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-728	74LS00	QUAD NANDS	
443-730	74LS74	DUALD FLIP-FLOPS	
443-752	74LS175	QUADD FLIP-FLOPS	
443-753	74S240	OCTALTRISTATE BUFFERS	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

$\begin{aligned} & \text { HEATH } \\ & \text { PART } \end{aligned}$ NUMBER	MAYBE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-779	74LS02	QUAD NORS	
443-791	74LS244	TRI-STATE BUFFER/DRIVERS	
443-792	74LS132	QUADNANDS	
443-798	74LS20	DUAL 4-INPUT NANDS	

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-800	74LS27	TRIPLE 3-INPUT NORS	
443-805	74LS273	OCTALD FLIP-FLOPS	
443-811	74LS125	QUAD TRI-STATE BUFFER	
443-824	74LS241	TRI-STATE BUFFER/DRIVER	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-863	74LS374	OCTALD TRI-STATE FLIP-FLOP	
443-875	74LS32	QUAD 2-INPUT OR	
443-877	74LS138	$\begin{gathered} 3 \text {-line } \\ \text { to } \\ 8 \text {-line } \\ \text { DECODER } \end{gathered}$	
443-900	74574	DUALD FLIP-FLOP	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-971	74LS688	$\begin{gathered} \text { 8-BIT } \\ \text { COMPARATOR } \end{gathered}$	
443-997	1797	$\begin{gathered} \text { FLOPPY } \\ \text { DISK } \\ \text { CONTROLLER } \end{gathered}$	
443-998	1691	FLOPPY SUPPORT LOGIC	

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

(cont'd)

SEMICONDUCTOR IDENTIFICATION

Integrated Circuits (Cont'd)

HEATH PART NUMBER	MAY BE REPLACED WITH	DESCRIPTION	LEAD CONFIGURATION (TOP VIEW)
443-1040	96LS02	MULTIVIBRATOR	
443-1063	74LS33	QUAD 2-INPUT BUFFER	

CIRCUIT BOARD X-RAY VIEW

NOTE: To find the PART NUMBER of a component for the purpose of ordering a replacement part:
A. Find the circuit component number (R13, R14, etc.) on the X-Ray View.
B. Locate this same number in the "Circuit Component Number" column of the "Replacement Parts List."
C. Adjacent to the circuit component number, you will find the PART NUMBER and DESCRIPTION which must be supplied when you order a replacement part.

CIRCUIT I
(Shown from the ce component

INTERCONNECT PIN AND SIGNAL DEFINITIONS

Refer to the Schematic and pages 6.13-6.15 for pin and signal numbers.

A0-A7	Address bits.
ALE	Address latch enable. Data and address lines from the CPU have valid information.
BDSEL	The H/Z-207 board is selected (enabled).
CLK	Clock signal.
CS	Chip select. When asserted, the 1797 chip is enabled.
D0-D7	Data bits on the H/Z-207 board's internal data bus.
DDEN	Double-density enable.
DIO-DI7	Data-in bits on the S-100 bus ("in" with respect to the CPU, not the controller).
DIR	Direction of drive head. When high, the drive head is stepping in. When low, the drive head is stepping out.
DO0-DO7	Data-out bits on the $\mathrm{S}-100$ bus ("out" with respect to the CPU, not the Controller).
DRQ	Data request. The 1797 data register needs data for write operations or the register has data for read operations.
DSA	Drive select A. In combination with DSB, addresses the drives.
DSB	Drive select B. In combination with DSA, addresses the drives.
EARLY	Write data bit early to disk drive (used for precompensation).

INTERCONNECT PIN AND SIGNAL DEFINITIONS

HLD	Head load.
HLT	Head load timing. The drive head is not engaged when this signal is low.
INDEX	The index hole on the diskette has been detected.
INTRQ	Interrupt request. H/Z-207 board has input for the CPU.
LATE	Write data bit late for drive precompensa- tion.
MRR	Master reset pin on the 1797 Controller chip that sets all registers in the chip to a known state.
pDBIN	Data request on data-in bus.
pSTVAL*	Satus valid.
pSYNC	New bus cycle may begin.
Pump down. Decreases the frequency of	
the raw read data tracking clock.	

INTERCONNECT PIN AND SIGNAL DEFINITIONS

RDD	Data and clock stream from the drive.
RDME	Data or status signals input for the bus are enabled.
RDY	Slave board is ready. (The H/Z-207 board is a slave board.)
RE	Read enable. Enables the 1797 chip for read operations when low.
READY	The 8" disk drive is ready.
RESET	Otherwise known as side select output. When high, side 1 is selected in the drive. When low, side 0 is selected.
SIDE1	Status signal signifying data input to the bus (read cycle) may occur.
sINP	Status signal signifying data output from the bus (write cycle) may occur.
sOUT	Steps the drive head one step per pulse.
STEP	Strobe output from the 1691.
STB	Track greater than 43. The drive read/write head is over or past track 43 (track of man- adatory precompensation in double-densi- ty 8" diskettes).
TG43	Track 0. The drive read/write head is over track o the diskette.
TKO a two-sided diskette.	

INTERCONNECT PIN AND SIGNAL DEFINITIONS

VFOE/WF	VFO enable/write fault. When WG is as- serted, VFOE/WF flags write faults when deasserted, terminating any write com- mand. When WG is deasserted, VFOE/ WF enables the data separator in the 1691.
VIO-VI7*	Vector interrupts.
WAIT	RDY line is low (not ready). Wait enable. Set the RDY line low on all accesses of the 1797 data register.
WD	Write data. Contains the data to be written onto the diskettes as well as the clock sig- nals.
WDIN	Write data into the 1691 phase lock loop control.
WDOUT	Write data out of the 1691 phase lock loop and precompensation controller.
WE	Write gate. Output to the disk drive is valid.
Write enable. Enables the 1797 chip for	

WRDATA Precompensated write data pulses that have been reshaped by U16.

5DS0-5DS3 Five-inch drive select signals.
5"FASTSTEP Enables fast stepping in the 5.25 " drives.
$8^{\prime \prime} / 5^{\prime \prime}$

8DS0-8DS3
CLOCK
01-04
Precompensation phase signals.

5-1/4" Floppy Drives

Description 7.2
Programming 7.3
Cable Connections 7.5
Operation 7.6

DESCRIPTION

The Z-207-3 5-1/4" Floppy Drive is a mass storage device that stores programs and information for your computer.

Information is stored on two sides of a 5.25 -inch, oxide-coated diskette with 40 tracks per side. This drive is capable of dou-ble-density operation when it is used with a double-density controller, like the one supplied in the $\mathrm{H} / \mathrm{Z}-100$ family computers.

The recording heads are single Read/Write gap-type heads. The head carriage is positioned by a stepper motor that moves the head carriage in $.02083^{\prime \prime}$ steps, producing 48 tracks per inch (TPI). The disk controller card in your Computer is the interface between the computer bus and the Disk Drive.

A transducer in the Drive detects the presence or absence of a notch in the diskette to insure write protection. If the notch is not detected, a signal is transmitted to the controller to indicate a read-only condition. If the notch is detected, the signal indicates a read/write condition.

The diskettes load quickly and easily through the slot in the front panel.

PROGRAMMING

HARDWARE UNIT ZERO

Pictorial 7-1
Drive Programming
*Must be installed in hardware unit zero if only one 5-1/4"floppy drive is installed in the Computer.

PROGRAMMING

Programming Plugs

Refer to Pictorial 7-1 for the following steps.

- If this Drive is to be hardware unit 0 , cut the programming plug as shown in Part A of the Pictorial.
- If this Drive is to be hardware unit 1, cut the programming plug as shown in Part B of the Pictorial.

Terminator IC's

Each Drive is supplied with a terminator IC installed in it. (See Pictorial 7-1.) However, each Computer system, no matter how many 5-1/4" floppy drives it has, should have only one drive with a terminator IC installed in it. This terminator IC should be located in the drive that is physically last on the flat cable. Perform the following step that pertains to your system.

- If your system has only one Drive, leave the terminator IC installed in the Drive.
- If your system has two Drives, refer to Pictorial 7-2 and remove the terminator IC from Drive X.

Pictorial 7-2
Two-Drive System Termination

CABLE CONNECTIONS

Refer to Pictorial 7-3 for a view of cable connections.

Pictorial 7-3
Connecting Drive Cables

OPERATION

Diskette Loading

Refer to Pictorial 7-4, open the front panel door, and insert the diskette with the label up as shown. Then close the door.

Diskette Handling

The diskette can be easily damaged. Handle it carefully as follows:

1. Keep the diskette in its storage envelope whenever it is not in the Floppy Disk drive.
2. Keep the diskette away from magnetic fields. Magnetic fields can distort the recorded data on the diskette.
3. Replace damaged or worn storage envelopes.
4. Write on the plastic jacket only with a felt-tip pen. Do not use a lead pencil or ball-point pen.
5. Keep the diskette away from hot or contaminating materials.
6. Do not expose the diskette to sunlight.
7. Do not touch or clean the surface of the diskette. Fingerprints and abrasions can alter stored data.

Pictorial 7-4 Diskette Loading

Write-Protect

This diskette can be write protected so that it cannot be written on. To do this, cover the side notch with a tab or opaque tape. See Pictorial 7-5.

Pictorial 7-5
Write Protection

Power Supply

Power Line Considerations 8.2
Specifications 8.3

POWER LINE CONSIDERATIONS

The power supply is a line-operated, voltage-fed, half-bridge, switching-type power supply. It first converts the AC line voltage to direct current and then chops this DC into a quasisquarewave. This squarewave drives the primary of an inverter transformer. The secondary currents are converted to low voltage DC by rectifiers and filters.

The 115/230 switch (located on the rear of your Computer), is normally set at 115. This corresponds to the normal line voltage in the U.S.A. However, if you intend to use your Computer on 220 volts, reset the switch to the 230 position. (NOTE: Do not attempt to change the fuse that is inside your power supply. It is the proper value for both 115 and 230 -volt operation.) Also, read and comply with the following information.

The plug on the power cord is for standard 115 VAC outlets. For 230 VAC operation in the U.S.A., replace the line cord and connector in a manner such that your power connection conforms with section 210-21 (b) of the National Electric Code, which reads, in part:
"Receptacles connected to circuits having different voltages, frequencies, or types of current (AC or DC) on the same premises shall be of such design that attachment plugs used on such circuits are not interchangeable."

When you install the new plug, make sure it is connected according to your local electrical code. Units with threewire line cords must always have the green wire connected to chassis ground.

NOTE: The power supply section of your Computer is not considered to be field serviceable. Therefore, if it ever becomes defective, you should exchange it or return it to an authorized service center.

SPECIFICATIONS

AC Input Voltage	$\begin{aligned} & 100-130 \mathrm{VAC}, 60 \mathrm{~Hz} ; \\ & 200-260 \mathrm{VAC}, 50 \mathrm{~Hz} ; \\ & \text { switch selectable } \end{aligned}$
Temperature Range	10 degrees C to 50 degrees C.
Hold Up Time	16 milliseconds at full load.
Current Limiting	130\% of maximum output shuts down power supply.
Maximum Turn-on Surge	60 amperes for $1 / 2$ cycle
Overvoltage Protection	130% overvoltage on +5 -volt line shuts down power supply.
DC Outputs	$+5 \mathrm{VDC} \pm 3 \%$ at 12 amperes maximum. Including ripple, 2 amperes minimum. Ripple: 100 mV peak-to-peak maximum.
	$+12 \mathrm{VDC} \pm 5 \%$ at 5.2 amperes maximum with +5 VDC load at 6 amperes. Including ripple, 0.4 amperes minimum. Ripple: 120 mV peak-to-peak maximum.
	$+8 \mathrm{VDC},+10 \%,-5 \%$ at 8 amperes maximum. Including ripple, 150 mA minimum. Ripple: 120 mV peak-to-peak maximum.
	$+16 \mathrm{VDC},+20 \%,-10 \%$ at 1 ampere maximum. Including ripple, 5 mA minimum. Ripply: 150 mV peak-to-peak maximum.
	$-16 \mathrm{VDC},+20 \%,-10 \%$ at 1 ampere maximum at 5 mA minimum. Ripple 120 mV peak-to-peak maximum.

SPECIFICATIONS

All-In-One Version Only
Additional $+12 \mathrm{VDC} \pm 5 \%$ output at 1.5 amperes maximum.
Ripple: 50 mV peak-to-peak maximum.

Zenith Data Systems reserves the right to discontinue products and to change specifications at any time without incurring any obligation to incorporate new features in products previously sold.

Chassis, Cabinet, \& Cables

Replacement Parts List 9.2
Cables Location/Description 9.12
Circuit Boards \& Hardware 9.17

Page
 9.2

REPLACEMENT PARTS LIST

This Replacement Parts List includes the Z-100 All-in-One model and the Z-100 Low Profile model.

- Exploded Views
- Cables
- Hardware
- Circuit Boards
- Circuit Board Parts

Refer to the Parts List that corresponds to your Computer (Low-Profile or All-In-One).

All-In-One Model

The following Key Numbers correspond to the numbers on the All-in One parts pictorials. "ns" indicates a part that is not shown.

| KEY
 NO. | | PART | NO. |
| :--- | :--- | :--- | :--- |\quad| DESCRIPTION |
| :--- |
| 1 |

Page 9.3

REPLACEMENT PARTS LIST

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { KEY } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { NO. } \\ & \hline \end{aligned}$	DESCRIPTION
15	134-1247	34-conductor cable (disk drive to disk controller board)
16	200-1419	Drive chassis mounting plate
17	250-1264	$6-32 \times 3 / 8^{\prime \prime}$ hex head screw
18	150-142	Disk drive (5 1/4" 48 tpi)
19	203-2129	Drive panel
20	250-1307	\#6 $\times 1 / 4^{\prime \prime}$ phillips head screw
21	203-2131	Dual drive escutcheon
ns	203-2141	Single drive escutcheon

Page 9.5

REPLACEMENT PARTS LIST

Page 9.6

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { KEY } \\ & \text { NO. } \end{aligned}$	PART NO.	DESCRIPTION
40	206-1416	S-100 card cage
41	94-631	S-100 card rack
42	203-2139-1	Back panel
43	254-9	\#4 lockwasher
44	252-2	Large 4-40 nut
45	134-1330	Floppy cable - 8" drive - 50 conductor
46	134-1254	Cable - RGB out
47	10-1192	Control-500 Ω
48	254-14	1/4" lockwasher
49	250-1307	\#6 $\times 1 / 4^{\prime \prime}$ sheet metal screws
50	252-39	$1 / 4^{\prime \prime} \times 32$ nut
51	255-757	Spacer
52	462-952	Knob
53	234-201	Power supply -All-in-One model
	234-256	All-in-One model with Winchester drive
54	200-1218-1	Chassis
57	250-1307	\#6 $\times 1 / 4^{\prime \prime}$ sheet metal screw
58	485-44	Long plug
59	485-42	Small plug
60	485-43	Medium plug
61	485-51	Plug
ns	89-60	Line cord

Page 9.7

REPLACEMENT PARTS LIST

Low Profile Model

The following Key Numbers correspond to the numbers on the Parts Pictorials. ns indicates part not shown.

KEY	PART	DESCRIPTION
NO.	NO.	
1	92-758	Top cover
2	204-2605	Slide rail
ns	258-750	Spring
4	206-1456	Drive shield
6	150-142	Disk drive 5-1/4", 48 tpi
7	262-56	Threaded pin
8	250-512	\#8 $\times 3 / 4^{\prime \prime}$ self-tapping screw
9	92-760	Drive shelf
10	203-2125	Escutcheon-dual drive
ns	203-2124	Escutcheon-single drive
11	234-200	Power supply - Low Profile
	234-257	Power supply - Lo Profile model with Winchester drive
15	64-899	Keyboard
16	204-2638-1	Cable clamp
17	134-1257	40-conductor cable video logic board to main board
ns	255-804	Large spacer to support video logic board
ns	261-29	Rubber foot
20	391-658	Nameplate

REPLACEMENT PARTS LIST

Page
 9.10

REPLACEMENT PARTS LIST

$\begin{aligned} & \text { KEY } \\ & \text { NO. } \end{aligned}$	PART NO.	DESCRIPTION
21	134-1254	7-conductor video RGB cable
22	134-1330	50-conductor flat cable
23	252-2	Large 4-40 nut
24	254-9	\#4 lockwasher
25	94-631	Card rack
26	206-1416	Card cage
27	200-1418-1	Chassis
28		Nut
29	254-6	\#6 washer
30	203-2139-1	Back panel
31	250-1307	$\# 6 \times 1 / 4^{\prime \prime}$ sheet metal screw
32	254-14	1/4" lockwasher
34	434-107	Phono socket
38	485-42	Small plug
39	485-43	Medium plug
40	485-44	Large plug
ns	89-60	Line cord

REPLACEMENT

CABLES LOCATION/DESCRIPTION

CABLES

$\frac{\text { PART NO. }}{134-1330}$	DESCRIPTION 50-conductor flat cable. From J16 on the rear panel to P1 on the disk controller board.
134-1257	40-conductor flat cable. From P304 and P305 on the video logic board to P104 and P106 on the main board.
$134-1246$	34-conductor flat cable. From J1 of each disk drive to P2 on the disk controller board.
$134-1254$	7-wire cable. From J9 on the rear panel to P303 on the video deflection board.
$134-1265$	Shielded cable from J14 on the rear panel to P301 on the video logic board.
$89-60$	Power line cord
$89-65$	Power line cord - Class B units

CABLES LOCATION/DESCRIPTION

The following lists provide you with a description and location of the cables and connectors used in your Z-100 Low-Profile or All-In-One Computer. Part numbers for these cables are listed in the Replacement Parts List in this manual.

A 8-wire socket (blk,wht,blu,blu,blu,yel,blk) to main board plug P101
B 8-wire socket (blk,blk,red,red,red,blk,blk) to main board plug P102
C 4-wire socket (red,blk,blk,wht) to the data separator card
D 4-wire socket (red,blk,blk,org) to the disk drive. Plug P4 on your power supply may have two ferrite beads with sleeving on the red wire.
E 4-wire socket (red,blk,blk,org) to the disk drive. Plug P5 on your power suppy may have two ferrite beads with sleeving on the red wire.
F 4-wire socket (red, red,blk,blk) to the Winchester drive

CABLES LOCATION/DESCRIPTION

Video Logic Board

Pictorial 9-2
Video Logic Cables

40-conductor cable from plug P104 to the main board plug P304. Part number 134-1257.
40-conductor cable from plug P106 to the main board plug P305. Part number 134-1257.

CABLES LOCATION/DESCRIPTION

Keyboard

Pictorial 9-3
Keyboard Cables
20-conductor flex cable to the main board plug P105
10-conductor flex cable to the main board plug P107

CABLES LOCATION/DESCRIPTION

Video Deflection Board

Pictorial 9-4
Video Deflection Cables
6-wire socket from the power supply and video board to the 10-pin plug on the video deflection board

2-wire socket from the horizontal yoke to the video deflection board (horiz yoke plug)

2-wire socket from the vertical yoke to the video deflection board (vert yoke plug)

CIRCUIT BOARDS \& HARDWARE

Circuit Boards

PART NO.		DESCRIPTION
$181-3630$		Main board (8K ROM)
$181-4106$		Main board (16K ROM)
$181-3631$		Video logic board (B/W)
181-3267		Video logic board (color)
181-3763		Floppy disk controller board
$234-202$		Video deflection board

Hardware

PART NO. DESCRIPTION
\#4 Hardware

$250-1411$	$4-40 \times 1 / 4^{\prime \prime}$ screw
$250-1413$	$4-40 \times 1 / 2^{\prime \prime}$ screw
$254-9$	\#4 lockwasher
$252-15$	Small 4-40 nut
$252-2$	Large 4-40 nut

\#6 Hardware

$250-1422$	$6-32 \times 1 / 4^{\prime \prime}$ flat head screw
$250-1307$	$\# 6 \times 1 / 4^{\prime \prime}$ sheet metal screw
$250-1325$	$6-32 \times 1 / 4^{\prime \prime}$ pan head screw
$250-1264$	$6-32 \times 3 / 8^{\prime \prime}$ hex head screw
$250-1199$	$\# 6 \times 5 / 8^{\prime \prime}$ self-tapping screw
$254-6$	$\# 6$ external lockwasher
$254-1$	$\# 6$ internal lockwasher
$252-3$	$6-32$ nut

Other Hardware

$262-56$	Threaded pins
$250-512$	$\# 8 \times 3 / 4^{\prime \prime}$ self-tapping screw
$255-757$	Small spacer
$255-804$	Large spacer
$258-750$	Spring

Programming Data

Description 10.2
General Information 10.3
Devices Permitting User Programming 10.10
Port Addresses 10.11
Z-DOS Initialization Sequence 10.14
ASCII Chart 10.30
Escape Codes 10.38
Escape Codes Defined 10.42
Key Code Chart 10.52
Keypad Code Chart 10.59
Function Key Code Chart 10.60

DESCRIPTION

This section of the Manual provides condensed system programming information. It is provided for the experienced programmer to help him understand the Computer System so he can develop his own software or firmware.

GENERAL INFORMATION

8085 Key Facts

Clock Speed: $\quad 5 \mathrm{MHz}$.
Address Space: 16 bits extended to 24.
Interrupts: \quad TRAP $=$ (NMI or power failure) RST5.5, RST6.5, RST7.5 disabled.
Vectored interrupts through 8259 disabled by Mask.
DMA: External devices, and processor
Reset: swap.
Keyboard function.

8088 Key Facts

Clock Speed: $\quad 5 \mathrm{MHz}$.
Address Space: 20 bits, extended to 24.
Interrupts: \quad NMI $=(\mathrm{NMI}$ or power failure $)$.
TEST jumperable to 0 or 1.
Vectored by 8259.
DMA: External devices, and processor swap.
Reset: Keyboard function.

ROM Information

Size:
$4,8,16$, or 32 kilobytes (by jumpers).
Address: 1016-1023K or, top 8k or every 64k or, every 8 k in memory or, can be deselected.

RAM Information

Size:
Address:
64k to 192k, in 64k increments, parity standard.
Dependent on mapping ROM.

GENERAL INFORMATION

Interrupt structure

```
Device Type: 8259A.
Number: Master standard; slave optional.
LEVELS MASTER
    0 (Highest) Error = Parity error or (S-100 pin 98).
    1
    2
    3
    4
    5
    6
    7
LEVELS SLAVE
0
1
2
3
4
5
6
7
S-100 vectored interrupt 0.
\begin{tabular}{cccc}
\("\) & \("\) & \("\) & 1. \\
\("\) & \("\) & \("\) & 2. \\
\("\) & \("\) & \("\) & 3. \\
\("\) & \("\) & \("\) & 4. \\
\("\) & \("\) & \("\) & 5. \\
\("\) & \("\) & \("\) & 6. \\
\("\) & \("\) & \("\) & 7.
\end{tabular}
```


GENERAL INFORMATION

Processor Swapping

The Computer contains two processors, with selection circuitry to enable the desired processor. Processor swap occurs when the presently selected processor writes to bit 7 (MSB) of the processor swap port (PSP). A 1 selects the 8088 and a 0 selects the 8085 . The processor swap port is port FE.

When a processor swap occurs, the newly selected processor can restart from where it left off, or an interrupt can keep it from starting. Interrupt generation is enabled by writing a 1 to bit 1 of the PSP.

If interrupts are not masked, the currently selected processor is signalled when an interrupt is requested. If the MASK mode is selected, no interrupts will get through to the 8085 and the 8088 will service all interrupts. In the MASK mode, the 8088 is selected whenever an interrupt occurs. MASK is bit 0 (LSB) of the PSP. A 1 activates this function.

Bit Definition

$0 \quad 0=$ Both processors receive interrupts
1 = Force a processor swap to 8088 if 8085 active
$10=$ Resume execution from previous address
$1=$ Force an interrupt as newly selected processor becomes active
$7 \quad 0=$ Select 8085 processor
$1=$ Select 8088 processor

GENERAL INFORMATION

Memory Mapping

Four options affect how the ROM is addressed. These options are enabled when the program writes to the memory control latch (MEMCTL). Latch bits 2 and 3 control the four options (bit $3=$ MSB). The MEMCTL latch is at port FC.

The first option is used for power up. The two control bits are zero ($B 3=0, B 2=0$). In this mode, the ROM appears to be in all of address space during reads. Memory writes occur normally. The ROM code will perform a far jump (into itself), and then select another ROM addressing option.

The following chart shows which port bits control the four ROM configurations.

BITS DEFINITION
$3,2 \quad 00=$ Option $0 \quad 01=$ Option 1
$10=$ Option $2 \quad 11=$ Option 3
Option 0, the power-up or master reset configuration, makes the code in ROM appear to be in all of memory when reads are performed. Writes, however, occur normally.

Option 1 makes the ROM code appear to be at the top of every 64 K page of memory.

Option 2 makes the ROM code appear to be at the top of the first megabyte of memory.

Option 3 disables the ROM.
When the ROM is selected, all other memory (except video RAM) is deselected to allow other memory to "share" the ROM's address space (phantom). NOTE: Be careful not to select video RAM when option 0 or 1 is enabled, and be careful when you select the video RAM when option 1 is selected.

GENERAL INFORMATION

RAM normally consists of from one to three banks of 64 K bytes. This provides from 64 to 192K bytes of memory.

The RAM address configuration depends on the map control bits in MEMCTL. Bit 0 is MAPSEL0 and bit 1 is MAPSEL1.

The following chart shows which port bits control the various RAM configuration.

BITS DEFINITION

$$
\begin{array}{lll}
1,0 & 00=\text { Option } 0 & 01=\text { Option } 1 \\
& 10=\text { Option } 2 & 11=\text { Option } 3
\end{array}
$$

Option 0, the power-up and master reset configuration, provides contiguous addressing; from 0 to 192 K .

Option 1 swaps the RAM block from 0 to 48 K with the block at 64 to 112 K .

Option 2 swaps the RAM block from 0 to 48 K with the block at 112 to 160 K .

Option 3 swaps the RAM block from 4 to 60K with the block at 68 to 124 K .

Parity

Parity consists of a parity bit for each byte in RAM. This adds one, two, or three 64 K -bit chips (depending on how much RAM is installed: $64 \mathrm{~K}, 128 \mathrm{~K}$, or 192 K) and the associated support circuitry.

RAM parity has two control options: ZERO_PARITY and KILL _PARITY. The ZERO_PARITY option sets parity to the zero state regardless of the data pattern that was written, and forces a parity error to check the parity logic. The option is activated when the system writes a 0 to bit 4 of the Memory Control Latch (MEMCTL) port.

GENERAL INFORMATION

The KILL _PARITY option disables the parity checking circuitry. This option is enabled when the system writes a 0 to bit 5 of the MEMCTL port. It also clears a parity error by first writing a 0 to bit 5 of the port and then a 1 to bit 5 of the port.

Timer

The 8253 timer has three channels. (See Pictorial 10-1). Each channel has an input (CLK), and an output (OUT). As shown, channels 0 and 1 are cascaded. CLK0 and CLK2 are tied to a $250 \mathrm{kHz}(4 \mu \mathrm{~s})$ clock, and the CLK1 input is tied to the output of channel 0 .

The two outputs that are available externally are OUTO and OUT2. These are ORed together to produce the timer interrupt input of the 8259. A latch is provided which, when read by software, determines which of the channels caused the interrupt (TMRSTAT).

TMRSTAT must be cleared by the program after it is read. Bit 0 of TMRSTAT corresponds to OUT0, and bit 1 is OUT2. The appropriate latch is cleared by writing a 0 to that bit of TMRSTAT.

Pictorial 10-1

GENERAL INFORMATION

The 8253 data sheet is supplied in the Appendices portion of this documentation. The following chart is provided for the convenience of those who may already be familiar with the 8253 device.

BIT DEFINITION

$0 \quad 0=$ Use 16-bit binary counter 1 = Use 4-decade binary coded decimal counter
$1000=$ Mode $0 \quad 001=$ Mode 1
$2 \quad$ X10 $=$ Mode 2 ${ }^{*} \quad$ X11 $=$ Mode 3
$3 \quad 100=$ Mode $4 \quad 101=$ Mode 5
$400=$ Counter latch $\quad 01=$ Read/load least significant byte
$5 \quad 10=$ Read/load most $11=$ Read/load least signifisignificant byte cant byte, then most significant byte
$6 \quad 00=$ Counter $0 \quad 01=$ Counter 1
$7 \quad 10=$ Counter $2 \quad 11=$ undefined
*X = Don't care.

DEVICES PERMITTING USER PROGRAMMING

Several of the major IC's in your Computer are user programmable. Please refer to the manufacturer's data sheets in the Appendices portion of this documentation for programming information. These IC's include:

8259's Interrupt controllers
6845 CRT controller (CRT-C)
2561's Synchronous/asynchronous data communications controller
6821's Parallel interface controller
8253 Timer
1797 Floppy disk controller
Also included in the Appendices is the S-100 proposed specifications, the 8085 instruction set and the IAPX 88 Book, which includes the 8088 instruction set.

PORT ADDRESSES

The following chart lists the input/output port assignments for the H/Z-100 series computers.

Device	Port Address (in hexadecimal)
DIP Switch SW101	OFF
Processor Swap Port	OFE
High Address Latch	OFD
Memory Control Latch	OFC
8253 Timer Status	OFB
reserved by ZDS	0F6-0FA
8041A Keyboard Processor	0F4-0F5
8259A Master Interrupt Controller	0F2-0F3
8259A Slave Interrupt Controller	0F0-0F1
2661 Serial B (Modem Port)	OEC-OEF
2661 Serial A (Printer Port)	0E8-0EB
8253 Timer	0E4-0E7
Parallel Port (Main Board)	OE0-0E3
reserved by ZDS	ODF
Light Pen Control	ODE
6845 CRT Controller	ODC-0DD
Video 68A21 Parallel Port	0D8-0DB
reserved by ZDS	0C0-0D7
ET-100 Trainer Parallel Input/Output	0D4-0D7*
ET-100 CRT Controller	0CD-0CE*
Secondary Floppy Disk Controller	0B8-0BF
Primary Floppy Disk Controller	0B0-0B7
Primary Winchester Controller	OAE-OAF
Secondary Winchester Controller reserved by ZDS	$\begin{aligned} & \text { OAC-OAD } \\ & 0 A 8-0 A B \end{aligned}$

[^1]
PORT ADDRESSES

Device	Port Address (in hexadecimal)
Gateway (reserved)	OA4-0A7
Network Card (NET-100)	OAO-0A3
Expansion Memory Boards (Z-205)	098-09F
reserved by ZDS	084-097
Development Port (Temporary)	080-083
Primary Multiport Card (Z-204)	060-07F
Secondary Multiport Card (Z-204)	040-05F
reserved for non-ZDS vendors	000-03F
Memory Assignments	
Device	Port Address (in hexadecimal)
MTR-100	
(Monitor ROM - Firmware)	OF000:0C000-0FFFF
reserved by ZDS	0F000:01000-0BFFF
Network Card (NET-100)	OF000:00000-00FFF
Video RAM (Green Plane)	0E000:00000-0FFFF
Video RAM (Red Plane)	0D000:00000-0FFFF
Video RAM (Blue Plane)	0C000:00000-0FFFF
User RAM	00000:00000-0B000:0FFFF
ET-100 Reserved Addresses (in addition to those listed above)	
MTRET-100 (Monitor ROM - Firmware II)	0F000:08000-0BFFF
MTRET-100 (Monitor ROM - Firmware I)	0F000:04000-07FFF
Since the ET-100 trainer cannot aco future H/Z-100 S-100 cards may tions.	commodate S-100 cards, tilize these memory loca-

PORT ADDRESSES

Parallel Port

The parallel port is designed around U114 (68A21), the Peripheral Interface Adapter. The IC performs three functions: It operates as a printer port, it serves as a port for the light pen and it couples the video board vertical retrace signal to the CPU. The CPU accesses the PIA for programming or data transfer. At the same time it will chip-select the PIA by asserting the 6821CS control line from the I/O port decoder. The CPU asserts the OUT line, pin 21, when the Computer needs to write to the PIA. In all other cases, the PIA will remain in the read mode. Data transfer takes place when the CPU asserts $\bar{W} 0$

Light Pen

The light pen circuits consists of four ICs. By itself, the CPU will not respond to a signal from the light pen circuits. It requires a user-supplied program to set up interrupts, handle timing, and take care of bit locations pointed to by the light pen.

Z-DOS INITIALIZATION SEQUENCE

This section describes all phases of Z-DOS initialization from the time that control is passed from the system ROM until Z-DOS gives control to COMMAND.COM for standard system operation. Following the initialization description are some sample initialization programs.

Z-DOS start-up is basically a two-step process. First, the loader is loaded from sector zero of the diskette. Then, the loader loads IO.SYS from the diskette and passes control to IO.SYS. The IO.SYS:

- Loads the operating system.
- Loads COMMAND.COM.
- Passes control to COMMAND.COM.

The following sections thoroughly discuss each of these functions.

The Loader

The purpose of the loader is to load in IO.SYS and pass control to it. The first 512 bytes of every diskette (or full sector if sector sizes are greater than 512 bytes) is reserved for the loader. The loader resides in a known location on the diskette (the first 512 bytes) so that the system ROM can correctly locate it when the user issues the BOOT command to the ROM.

The loader is placed on the diskette by the FORMAT program. The same loader is used on each type of diskette, whether it is 8 inch or $5-1 / 4$ inch. A small table located at offset 3 in the loader contains specific information about the type of diskette that it resides on. This disk information is placed in the loader by FORMAT just before FORMAT writes the loader onto a newly formatted diskette.

Z-DOS INITIALIZATION SEQUENCE

The system ROM loads in the loader at address 0:400. The contents of the instruction pointer (IP) is therefore 400, and the code segment (CS) register is 0 . The other registers are assumed to contain random data. The loader assumes that the system ROM read is enough of track zero so as to have at least the first sector of the director already in RAM. This may be anywhere from 4 sectors to 17 sectors, depending on the disk format. This allows the loader to be smaller, since it does not have to read in the directory. (See Pictorial 10-2.)

Pictorial 10-2
Loader

The first thing the loader does is to relocate itself. This is because it must load IO.SYS at address 40:0. The loader relocates itself to address 400:400 and performs a long jump to this address + current IP. (See Pictorial 10-3.)

Pictorial 10-3
Relocation of Loader

Z-DOS INITIALIZATION SEQUENCE

Secondly, the loader sets up the registers into the 8080 memory model ($C S=D S=S S=E S$) and proceeds to collect information passed to it by the system ROM. This information includes boot device number, port address, and boot string. It then locates the ROM to the top of the 8088 address space.

Next, the loader locates the proper address that contains the first sector of the directory, and insures that the first named file is IO.SYS. It also determines if the diskette drive should be double stepped, which is necessary if 48 tpi media is used in a 96 tpi drive. Once 1O.SYS is located, its starting sector number and size in sectors is computed, and it is then read into memory at address 40:0. Note that the loader assumes that IO.SYS file is contiguous on the diskette and is less than 16 K bytes long.

The disk layout of track 0 is:
Track 0
Sector 0 - Loader (512 bytes).

- FAT* \#1 (Varies).
- FAT \#2 (Same as FAT \#1, used for backup).
- Directory (Varies, 32 bytes per entry).
- Data space to end of diskette.
*FAT (File Allocation Table)

Z-DOS INITIALIZATION SEQUENCE

The specific disk layouts for the different diskette formats is as follows. The first number is the starting sector number, and the number in parenthesis is the size in sectors.

	$\underline{48 s s}$	$\underline{48 \mathrm{ds}}$	$\underline{96}$	$\underline{8^{\prime \prime} s s}$	$\underline{8^{\prime \prime} \mathrm{ds}}$
	$0(1)$	$0(1)$		$0(1)$	$0(4)$
Loader	$0(1)$	$1(1)$	$1(1)$	$4(6)$	$0(1)$
FAT \#1	$1(2)$				
FAT \#2	$2(1)$	$2(1)$	$2(1)$	$10(6)$	$3(2)$
Directory	$3(4)$	$3(7)$	$3(9)$	$16(26)$	$5(6)$
Data	$7(313)$	$10(630)$	$12(1268)$	$42(1960)$	$11(1221)$
Bytes/sector	512	512	512	128	1024

Once IO.SYS has been read into memory at address 40:0 (see Pictorial 10.4), the loader executes a far jump to IO.SYS, and the source index (SI) register points to the diskette parameter table mentioned in the discussion of FORMAT above. The only error messages issued by the loader will be "No System" if IO.SYS is not the first file on the diskette, or "I/O error" if a read error occurs while IO.SYS is being loaded. Note that the loader does not do retries on read operations.

Pictorial 10-4
Loader-IO.SYs

Z-DOS INITIALIZATION SEQUENCE

IO.SYS

IO.SYS is entered at address $40: 0$, with SI pointing to the disk parameter table contained in the loader (see the following table). The IO.SYS insures an 8080 memory model ($C S=D S=E S=S S$), and then sets its stack pointer to a memory address in the IO.SYS workspace. It then moves the loader information table into a known location in IO.SYS for future access.

Loader Disk Parameter Table

Byte	0-2		$=$	Near JMP.
	3		=	Version number (should be 1).
	4-5			Sector size in bytes.
	6		=	Sectors per cluster.
	7		=	Number of reserved sectors.
	8-9		$=$	Number of FATs (should be 2).
	10-11		$=$	Number of director entries.
	12-13		$=$	Number of sectors on the disk.
	14		=	Log 2 of sector size.
	15		=	Sectors per track.
	16-17		=	First sector number of data area.
	18		=	Log 2 of cluster factor.
	19-20		=	First sector of directory area.
	21		$=$	Flag byte.
		Bit 0	$=$	1 if double-sided.
		1	=	1 if fast stepped.
		2-3	=	Not used.
	22		$=$	Select byte.
		Bit 0-1	=	Should be zero.
		2	$=$	1 if $8^{\prime \prime}$ drive.
		3	$=$	Always $=1$.
		4	=	1 if to use precomp.
		5-6	=	Not used.
		7	$=$	1 if single-density.
	23-24		$=$	Port number of controller.

Z-DOS INITIALIZATION SEQUENCE

IO.SYS next moves the ROM work space to the IO.SYS's workspace, so that it will not conflict with other pieces of the system.

Then the IO.SYS performs as follows:

1. The interrupt vectors are all initialized to the default interrupt handler address, the wild interrupt handler.
2. The new ROM data segment address, and the keyboard interrupt handler address are set into the interrupt page.
3. The interrupt routine addresses for the timer, slave 8259A, serial ports A and B, keyboard/display/light pen, parallel port, and the eight slave interrupt lines from the 8259A are set into the interrupt vector page.
4. The keyboard, serial A and serial B, and the PIA port are initialized with mode bytes and command port clearing, along with direction information for the PIA.
5. The light pen is set to cause CA1 to be set, but not issue interrupts on a 0 to 1 transition, and the V sync is set to cause CA2 to be set and to cause an interrupt on 0 to 1 transitions.

Z-DOS INITIALIZATION SEQUENCE

6. The timer is then initialized, and a test is made to insure that the timer is functioning properly.
7. The slave 8259A is set for level-triggered cascading, and the 8086 interrupt is set to fully nested and non-buffered. The master 8259A is also set for the same configuration. At this point, interrupts are enabled.

The configuration information (setup by CONFIGUR) is now used to initialize the Z-DOS devices PRN, AUX, and CON. The defaults for these devices are:

> PRN - Serial A, 4800 baud, DCD high
> AUX - Serial B, 4800 baud, DCD high
> CON - System CRT

At this point the sign-on message is printed, identifying IO.SYS, and IO.SYS and loader are checked for compatible revision numbers. If this is true, IO.SYS uses the information concerning device unit and port number, passed to it by the loader, to set up its disk tables and the default drive name used by Z-DOS.

Z-DOS INITIALIZATION SEQUENCE

Z-DOS Drive Mapping

For each $5-1 / 4^{\prime \prime}$ and $8^{\prime \prime}$ drive in the system, IO.SYS restores the drive head. If it sees an invalid track zero indication, it marks the drive as imaginary in the drive table. Otherwise, it issues "10 steps out" and then another restore. Once it locates all the non-existant drives, it then locates a matching existing drive, and maps the imaginary drive into that existing drive. If it finds no existing drive, it marks the imaginary drive as real, and sets the flag to indicate that the system should not allocate any imaginary drives to this drive. This is done for the user who forgets to power on his $8^{\prime \prime}$ drives at boot time. Note that the existance/non-existance of $51 / 4^{\prime \prime}$ drives does not affect the settings of the $8^{\prime \prime}$ drives, or vice versa. See the following chart.

Drives Not	Physical Drives		
Located	51/4"	51/4" $8^{\prime \prime}$	$8^{\prime \prime}$
A:	I	R	
B:	R	1	
A: \& B:	R	R	
C:		I	R
D:		R	1
C: \& D:		R	R

NOTE: I indicates that the drive is imaginary, and R indicates that the drive is real. An imaginary drive will use the first real drive of the same type for all of its I/O.

Z-DOS INITIALIZATION SEQUENCE

The next address for the final location for the file Z-DOS.SYS is found by adding the total size of IO.SYS and its required work areas. Then the file Z-DOS.SYS is searched for in the directory. Z-DOS.SYS must be the second name in the directory for IO.SYS to be able to locate it. Again, the Z-DOS.SYS file is assumed to be contiguous and less than 64 K bytes long. During proper operation the file Z-DOS.SYS is read into memory, the DOS_INIT routine in Z-DOS.SYS is called with pointers to the disk parameter table, and a flag tells Z-DOS to size memory. (See Pictorial 10-5.)

Pictorial 10-5

 z-DOS.SYsThe disk parameter table defines the number of valid disk drives, as well as all the possible sector/directory/diskette capacities. DOS_INIT uses this information to calculate disk buffers, FAT buffers, and do some preliminary memory initialization and internal table setup. DOS_INIT is located with the file Z-DOS.SYS.

Z-DOS INITIALIZATION SEQUENCE

On return from DOS INIT, IO.SYS turns on the keyboard, and then uses the appropriate function calls to load and execute the file COMMAND.COM. Once COMMAND.COM is loaded, control is passed to it, at which point it initializes itself, prints its header, checks for AUTOEXEC.BAT, gets the date and time from the user, and prints the system prompt. Then the operating system is fully in control, and the user is ready to begin executing programs. (See Pictorial 10-6.)

Pictorial 10-6 Initialization Complete

Z-DOS INITIALIZATION SEQUENCE

Sample Programs

NOTE: Label definitions for the following programs can be found in the Z-DOS Distribution Disk II definitions files, or in Appendix I of Volume II of the Z-DOS Manual.

Z-DOS INITIALIZATION SEQUENCE

```
;
; Initialize the Keyboard
```



```
;
; Save video state set up by the ROM monitor
;
    IN AL,ZVIDEO+PIADATA ; Get current video state
    MOV BYTE PTR VIDEO_ROM,AL ; Save it
;
; Initialize the Serial port A
;
\begin{tabular}{ll} 
XOR & AL,AL \(\quad\); Turn off unit \\
OUT & ZSERA+EPCMD,AL \\
IN & AL, ZSERA+EPCMD ; Reset mode reg ptr \\
MOV & AL, EPSB1+EPCL8+EPA16X ; Set mode reg 1 \\
OUT & ZSERA+EPMODE,AL \\
MOV & AL,EPMR2A+EPB960 ; Set mode reg 2 \\
OUT & ZSERA+EPMODE,AL \\
MOV & AL, EPNORM+EPRTS+EPRESE+EPRXEN + EPDTR \\
OUT & ZSERA+EPCMD,AL ; Set Command port \\
IN & AL,ZSERA+EPDATA ; Clear input \\
IN & AL, ZSERA+EPDATA
\end{tabular}
;
; Initialize the Serial port B
\begin{tabular}{ll} 
XOR & AL, AL \(\quad\); Turn off unit \\
OUT & ZSERB+EPCMD,AL \\
IN & AL, ZSERB+EPCMD ; Reset mode reg ptr \\
MOV & AL, EPSB1+EPCL8+EPA16X ; Set mode reg 1 \\
OUT & ZSERB+EPMODE,AL \\
MOV & AL,EPMR2A+EPB960 ; Set mode reg 2 \\
OUT & ZSERB+EPMODE,AL \\
MOV & AL, EPNORM+EPRTS+EPRESE+EPRXEN+EPDTR \\
OUT & ZSERB+EPCMD,AL ; Set Command port \\
IN & AL, ZSERB+EPDATA ; Clear input \\
IN & AL, ZSERB+EPDATA
\end{tabular}
```


Z-DOS INITIALIZATION SEQUENCE

```
;
; Initialize PIA port
;
\begin{tabular}{lll} 
MOV & AL,PIADDAC \\
OUT & ZPIA+PIACTLA, AL
\end{tabular} ; Set control ports for data
; Make 0->1 transitions of light pen cause CA1 to be set, but do not cause interrupt
; Make 0->1 transitions of vsync cause CA2 to be set and cause interrupts
    MOV AL,PIADDAC+PIAC12+PIAC23 ; Set control port A for data
    OUT ZPIA+PIACTLA,AL
; Disable transitions of parallel printer to cause interrupt
    MOV AL,PIADDAC % ; Set control port B for data
; Clear CA1,CA2 and CB1,CB2 by reading the port and then using
; dummy I/O to drive clock on PIA (and thus cause clear to occur)
    IN AL,ZPIA+PIADATA ; Clear CA1,CA2
    IN AL,ZPIA+PIADATB ; Clear CB1,CB2
    IN AL,ZDIPSW ; Read from a "safe" place(the dip switch)
; Turn off clear of light pen/vsync so CA1/CA2 transitions can occur
    IN AL,ZPIA+PIADATA ; Get current data value
    OR AL,10100000B ; Turn off clear of Vsync/Light pen flipflops
    OUT ZPIA+PIADATA,AL ; Allow vsync to cause interrupts
;
; Initialize the Timer
```

; Make sure all counter read cycles are completed

IN	AL, ZTIMER+PITCO
IN	AL,ZTIMER + PITCO

Z-DOS INITIALIZATION SEQUENCE

IN	AL, ZTIMER+PITC1
IN	AL, ZTIMER+PITC1
IN	AL,ZTIMER+PITC2
IN	AL,ZTIMER+PITC2

; Init counter modes

```
    MOV AL,PITSC0+PITRLW+PITMSW
    OUT ZTIMER+PITCW,AL ; Counter O - square wave generator
    MOV AL,PITSC1+PITRLW+PITMITC
    OUT ZTIMER+PITCW,AL ; Counter 1 - event counter
    MOV AL,PITSC2+PITRLW+PITMITC
    OUT ZTIMER+PITCW,AL ; Counter 2 - intr on terminal count
; Init counter values
    XOR AL,AL ; Timer 1
    OUT ZTIMER+PITC1,AL
    OUT ZTIMER+PITC1,AL
    MOV AX,ZTIMEVAL ; Timer 0
    OUT ZTIMER+PITC0,AL
    MOV AL,AH
    OUT ZTIMER+PITCO,AL
; Wait for first rising clock from counter 0
    MOV AL,OFFH-ZTIMERSO
    OUT ZTIMERS,AL
    XOR CX,CX ; Get timeout value
TIMEL:
    IN AL,ZTIMERS ; Get status
    TEST AL,ZTIMERSO ; Has it occured yet ?
    LOOPZ TIMEL ; No, try again
    JNZ BINIC1 ; If clock responded, then skip
    JMP TIMERR ; Clock never responded
BINIC1:
; Clear any pending interrupts
    MOV AL,OFFH-ZTIMERSO-ZTIMERS2
    OUT ZTIMERS,AL
;
; Initialize parity generation
\begin{tabular}{lll} 
MOV & AL, BIOS MCL & ; Get value of memory control latch \\
TEST & AL, ZMCLPK & ; Is parity checking specified ? \\
JZ & MEMIF & ; No, skip \\
AND & AL, NOT ZMCLPK & ; Turn off checking(and on generation) \\
OUT & ZMCL, AL & ; Output value
\end{tabular}
; Set up the Z-205 boards
    MOV DX,Z205BA ; DX = base address
```


Z-DOS INITIALIZATION SEQUENCE

MOV AL,ICW10P+ICW1LT+ICW1IL4
OUT ZM8259A+ICW1,AL ; Level triggered, cascaded
MOV AL,ZM8259AI ; Get Master base interrupt number
OUT 2M8259A+ICW2,AL ; Set interrupt base number

Z-DOS INITIALIZATION SEQUENCE

```
MOV AL,ICW3S3
OUT 2M8259A+ICW3,AL ; Slave is connected to line 3
MOV
OUT
    AL,ICW4UPM+ICW4SFN
    ZM8259A+ICW4,AL ; Set processor to 8088, special fully nested, nonbuffered
    AL,NOT (OCW1IMO OR OCW1IM2 OR OCW1IM4 OR OCW1IM5 OR OCW1IM6)
    ZM8259A+OCW1,AL ; Allow Fatal hardware, timer, serial A,
    ; serial B, and keyboard/video interrupts
```


ASCII CHART

OCT DEC HEX CHAR KEY CTRL DESCRIPTION

000	0	00	NUL		@	Null, tape feed.
001	1	01	SOH	...	A	Start of Heading.
002	2	02	STX	...	B	Start of text.
003	3	03	ETX	...	C	End of text.
004	4	04	EOT	...	D	End of transmission.
005	5	05	ENQ	\ldots	E	Enquiry.
006	6	06	ACK	\ldots	F	Acknowledge.
007	7	07	BEL	\cdots	G	Rings Bell.
010	8	08	BS	BACK SPACE	H	Backspace; also FEB, Format Effector Backspace.
011	9	09	HT	TAB	1	Horizontal Tab.
012	10	0A	LF	LINE FEED	J	Line Feed: advances cursor to next line.
013	11	OB	VT	...	K	Vertical tab (VTAB).
014	12	OC	FF	...	L	Form feed to top of next page.
015	13	OD	CR	RETURN	N M	Carriage Return to beginning of line.
016	14	OE	SO	\ldots	N	Shift Out.
017	15	OF	SI	\cdots	O	Shift In.
020	16	10	DLE	\ldots	P	Data link escape.
021	17	11	DC1	\ldots	Q	Device control 1:turns transmitter on (XON).
022	18	12	DC2	\ldots	R	Device control 2.
023	19	13	DC3	\ldots	S	Device control 3: turns transmitter off (XOFF).
024	20	14	DC4	\ldots	T	Device control 4.
025	21	15	NAK	..	U	Negative acknowledge: also ERR (error).
026	22	16	SYN	\ldots	V	Synchronous idle (SYNC).
027	23	17	ETB	\ldots	W	End of transmission block.
030	24	18	CAN	\ldots	X	Cancel (CANCL). Cancels current escape sequence.

ASCII CHART

OCT	DEC	HEX	CHAR	KEY	CTRL	DESCRIPTION
031	25	19	EM	\ldots	Y	End of medium.
032	26	1A	SUB	..	Z	Substitute.
033	27	1B	ESC	ESC	[Escape.
034	28	1C	FS	...	\}	File separator.
035	29	1D	GS	...]	Group separator.
036	30	1E	RS	\ldots	\wedge	Record separator.
037	31	1F	US	\ldots	-	Unit separator.
040	32	20	SP		\ldots	Space (Spacebar).
041	33	21	!	!	\ldots	Exclamation point.
042	34	22	"	"		Quotation mark.
043	35	23	\#	\#	...	Numbersign.
044	36	24	\$	\$...	Dollarsign.
045	37	25	\%	\%	...	Percentsign.
046	38	26	\&	\&	...	Ampersand.
047	39	27	,	,	\ldots	Acute accent or apostrophe.
050	40	28	((...	Open parenthesis.
051	41	29))	...	Close parenthesis.
052	42	2A	*	*	\ldots	Asterisk.
053	43	2B	$+$	+	...	Plus sign.
054	44	2 C		,	...	Comma.
055	45	2D	-	-	\ldots	Hyphen or minus sign.
056	46	2 E	Period.
057	47	2F	1	1	...	Slash.
060	48	30	0	0	...	Number 0.
061	49	31	1	1	...	Number 1.
062	50	32	2	2	...	Number 2.
063	51	33	3	3	...	Number 3.
064	52	34	4	4	\ldots	Number 4.
065	53	35	5	5	\ldots	Number 5.
066	54	36	6	6	...	Number 6.
067	55	37	7	7	...	Number 7.
070	56	38	8	8	...	Number 8.
071	57	39	9	9	...	Number 9.
072	58	3A	:	:	\ldots	Colon.
073	59	3B	;	;	\ldots	Semicolon.
074	60	3C	$<$	$<$		Less than.

ASCII CHART

OCT DEC HEX CHAR KEY CTRL DESCRIPTION SYMBOL

075	61	$3 D$	$=$	$=$	\ldots	Equal sign.
076	62	$3 E$	$>$	$>$	\ldots	Greaterthan.
077	63	$3 F$	$?$	$?$	\ldots	Question mark.
100	64	40	$@$	$@$	\ldots	At sign.
101	65	41	A	A	\ldots	Letter A.
102	66	42	B	B	\ldots	Letter B.
103	67	43	C	C	\ldots	Letter C.
104	68	44	D	D	\ldots	Letter D.
105	69	45	E	E	\ldots	Letter E.
106	70	46	F	F	\ldots	Letter F.
107	71	47	G	G	\ldots	Letter G.
110	72	48	H	H	\ldots	Letter H.
111	73	49	I	I	\ldots	Letter I.
112	74	4 A	J	J	\ldots	Letter J.
113	75	4 B	K	K	\ldots	Letter K.
114	76	4 C	L	L	\ldots	Letter L.
115	77	4 D	M	M	\ldots	Letter M.
116	78	4 E	N	N	\ldots	Letter N.
117	79	4 F	O	O	\ldots	Letter O.
120	80	50	P	P	\ldots	Letter P.
121	81	51	Q	Q	\ldots	Letter Q.
122	82	52	R	R	\ldots	Letter R.
123	83	53	S	S	\ldots	Letter S.
124	84	54	T	T	\ldots	Letter T.
125	85	55	U	U	\ldots	Letter U.
126	86	56	V	V	\ldots	Letter V.
127	87	57	W	W	\ldots	Letter W.
130	88	58	X	X	\ldots	Letter X.
131	89	59	Y	Y	\ldots	Letter Y.
132	90	5 A	Z	Z	\ldots	Letter Z.
133	91	5 B	I	I	\ldots	Open brackets.
134	92	5 C	X	X	\ldots	Reverse slash.
135	93	5 D	J	I	\ldots	Close brackets.

$136945 \mathrm{E} \wedge$ ^ ... Up arrow/caret.

ASCII CHART

ASCII CHART

OCT	DEC HEX	CHAR	KEY	CTRL DESCRIPTION	SYMBOL
155	109 6D	m	m	Letter m.	
156	1106 E	n	n	... Letter n .	
157	111 6F	0	0	Letter o.	
160	11270	p	p	Letter p .	
161	11371	q	q	Letter q .	
162	11472	r	r	Letter r.	
163	11573	S	S	... Letters.	(1......)

ASCII CHART

177	127	$7 F$	DEL DELETE ...	Delete (rubout).	Graphic characters supplied by
$200-128-80-$		Normal characters	operating ops		
377	255 FF			unassigned.	system software

ESCAPE CODES

Cursor Functions

ESC A	Cursor up
ESC B	Cursor down
ESC C	Cursor right
ESC D	Cursor left
ESC H	Cursor home
ESC I	Reverse index
ESCY	Direct cursor addressing
ESC j	Save cursor position
ESC n	Cursor position report
ESC k	Set cursor to previously saved position

Erasing and Editing

ESC E	Clear display and home cursor
ESC J	Erase to end of page
ESC K	Erase to end of line
ESC L	Insert line
ESC M	Delete line
ESC N	Delete character
ESC O	Exit insert character mode
ESC @	Enter insert character mode
ESC b	Erase to beginning of display
ESC 1	Erase entire line
ESC o	Erase to beginning of line

ESCAPE CODES

Modes of Operation

ESC F	Enter graphics mode
ESC G	Exit graphics mode
ESC $=$	Enter alternate keypad mode
ESC $>$	Exit alternate keypad mode
ESC p	Enter reverse video mode
ESC q	Exit reverse video mode
ESC t	Enter keypad shifted mode
ESC u	Exit keypad shifted mode
ESC x Ps	Set modes

> Where Ps equals:

1 = Enable 25th line
$2=$ No key click
4 = Block cursor
$5=$ Cursor off
$6=$ Keypad shifted
$7=$ Enter alternate keypad mode
$8=$ Auto line feed on receipt of CR
$9=$ Auto CR of receipt of line feed
; $=$ Nonblinking cursor
$<=$ Disable keyboard auto repeat
? = Enable key expansion
@ = Enable event driven (key up/down) mode

ESCAPE CODES

ESC y Ps Reset modes
Where Ps equals:
1 = Disable 25th line
2 = Enable key click
$4=$ Underscore cursor
$5=$ Cursor on
$6=$ Keypad unshifted
7 = Exit alternate keypad mode
$8=$ No auto line feed
$9=$ No auto CR
; = Blinking cursor
$<\quad=$ Enable keyboard auto repeat
? = Disable key expansion
(@) = Disable event driven
(key up/down) mode
ESC z Reset to power-up configuration

Additional Functions

ESC Z Identify as VT52 (ESC/K)
ESC \# Transmit page
ESC] Transmit 25th line
ESC ^ Transmit current line
ESC - Transmit character at cursor
ESC i 0 Zenith Identify Terminal Type
ESC m fore back (ASCII digit to specify color)
Where fore and back equal:
0 = Black
1 = Blue
$2=$ Red
$3=$ Magenta
$4=$ Green
$5=$ Cyan
$6=$ Yellow
7 = White

ESCAPE CODES

ESC $\{$	Keyboard enable
ESC $\}$	Keyboard disable
ESC v	Wrap-around at end of line
ESC w	Discard at end of line
ESC c	Key Click

The Computer will transmit the following sequences, but it will not respond to them if they are received by the Computer.

ESC J	Function Key F0
ESC S	Function Key F1
ESC T	Function Key F2
ESC U	Function Key F3
ESC V	Function Key F4
ESC W	Function Key F5
ESC P	Function Key F6
ESC Q	Function Key F7
ESC R	Function Key F8
ESC 0	Function Key F9
ESC 0J	Function Key F10
ESC OK	Function Key F11
ESC 0L	Function Key F12

ESCAPE CODES DEFINED

Cursor Functions

ESC A Cursor Up

Moves the cursor up one line. If the cursor reaches the top line, it remains there, and no scrolling occurs.

ESC B Cursor Down

Moves the cursor down one line without changing columns. The cursor will not move past the bottom (24th) line and no scrolling will take place. Use Direct Cursor Addressing to move the cursor to line 25 - when line 25 is active.

ESC C Cursor Right

Moves the cursor one character position to the right. If the cursor is at the right end of the line, it will remain there.

ESC D Cursor Left
Moves the cursor one character position to the left (backspaces). If the cursor is at the start (left end) of a line, it will remain there.

ESC H Cursor Home

Moves the cursor to the first character position on the first line (home).

ESC I Reverse Index

Moves the cursor to the same horizontal position on the preceding line. If the cursor is on the top line, a scroil down is performed.

ESC Y Direct Cursor Addressing
Moves the cursor to a position on the screen by entering the escape code, the ASCII character which represents the line number, and the ASCII character which represents the column number.

ESCAPE CODES DEFINED

The first line and the left column are both 32_{10} (the smallest value of the printing characters) and increase from there. Since the lines are numbered from 1 to 25 (from top to bottom) and the columns from 1 to 80 (from left to right), you must add the proper line and column numbers to 31_{10}. Then convert these decimal numbers to their equivalent ASCII characters and enter them in the following order:

ESC Y line \# (ASCII character) column \# (ASCII character)

If the line number entered is too high, the cursor will not move. If the column number is too high, the cursor will move to the end of the line.

This is the only way to move the cursor to the 25th line, but the 25 th line must first be enabled.

ESC j Save Cursor Position

The present cursor position is saved so the cursor can be returned here later when given the Set Cursor to Previously Saved Position command.

ESC n Cursor Position Report

The Terminal reports the cursor position in the form of ESC Y line\# column\#.

ESC k Set Cursor To Previously Saved Position

Returns the cursor to the position where it was when it received the Save Cursor Position command.

ESCAPE CODES DEFINED

Erasing And Editing

ESC E Clear Display And Home Cursor
Erases the entire screen, fills the screen with spaces, and places the cursor in the home position.

ESC J Erase To End Of Page

Erases all the information from the cursor (including the cursor position) to the end of the page.

ESC K Erase To End Of Line

Erases from the cursor (including the cursor position) to the end of the line.

ESC L Insert Line
Inserts a new blank line by moving the line that the cursor is on, and all following lines, down one line. Then the cursor is moved to the beginning of the new blank line.

ESC M Delete Line

Deletes the contents of the line that the cursor is on, places the cursor at the beginning of the line, moves all the following lines up one line, and adds a blank line at line 24.

ESC N Delete Character

Deletes the character at the cursor position and shifts any existing text that is to the right of the cursor one character position to the left.

ESC O Exit Insert Character Mode
Exits from the insert character mode.

ESCAPE CODES DEFINED

ESC @ Enter Insert Character Mode Lets you insert characters or words into text already displayed on the screen. As you type in new characters, existing text to the right of the cursor shifts to the right. As each new character is inserted, the character at the end of the line is lost.

ESC b Erase To Beginning Of Display
Erases from the start of the screen to the cursor, and includes the cursor position.

ESC I Erase Entire Line
Erases all of the line, including the cursor position.
ESC o Erase To Beginning Of Line
Erases from the beginning of the line to the cursor, and includes the cursor position.

ESCAPE CODES DEFINED

Modes Of Operation

ESC F Enter Graphics Mode

Enters the graphics mode to display any of the 33 special symbols (26 lower-case keys and seven other keys) that correspond to the graphic symbols.

ESC G Exits Graphics Mode

Exits the graphics mode and returns to the display of normal characters.

ESC $=$ Enter Alternate Keypad Mode
Enters the alternate keypad mode, which will then allow the keypad keys to transmit the following escape codes instead of the normal ones.

KEY	
	ESCAPE CODE
0	ESC?p
1	ESC?q
2	ESC?r
3	ESC?s
4	ESC?t
5	ESC?u
6	ESC?v
7	ESC?w
8	ESC?x
9	ESC?y
\bullet	ESC?n
ENTER	ESC?M
-	ESC?m

These special escape codes are user defined and must be recognized by your software.

ESCAPE CODES DEFINED

ESC > Exit Alternate Keypad Mode
Exits the alternate keypad mode and returns to the transmission of normal character codes.

ESC p Enter Reverse Video Mode

Enters the reverse video mode so that characters are displayed as black characters on a white background.

ESC q Exit Reverse Video Mode

Exits the reverse video mode.

ESC t Enter Keypad Shifted Mode Inverts the normal and shifted functions of the keypad. Now, if you hold down the SHIFT key, you will get a normally unshifted character.

ESC u Exit Keypad Shifted Mode
Exits the keypad shifted mode.

ESCAPE CODES DEFINED

Configuration

ESC x Ps Set Modes

Sets the following modes, where Ps equals:
1 = enable 25th line
$2=$ no key click
4 = block cursor
5 = cursor off
$6=$ keypad shifted
7 = enter alternate keypad mode
8 = auto line feed on receipt of CR
$9=$ auto CR on receipt of line feed
; = nonblinking cursor
$<=$ disable keyboard auto repeat
?= enable key expansion
@ = enable event driven (key up/down) mode

ESC y Ps Reset Modes

Resets special modes, where Ps equals:
1 = disable 25th line
2 = enable key click
4 = underscore cursor
5 = cursor on
$6=$ keypad unshifted
7 = exit alternate keypad mode
$8=$ no auto line feed
$9=$ no auto CR
; = blinking cursor
<= enable keyboard auto repeat
?= disable key expansion
@ = disable event driven (key up/down) mode

ESCAPE CODES DEFINED

Additional Functions

ESC z Reset To Power-Up Configuration

Nullifies all previously set escape modes and returns to the power-up configuration.

ESC Z Identify As VT52 (ESC 1 K)

The Computer responds to the interrogation with ESC/K to indicate that it can perform as VT52.

ESC \# Transmit Page
Transmits lines 1 through 24. (The computer requires a special routine to use this feature.)

ESC] Transmit 25th Line
Transmits the 25th line. (The computer requires a special routine to use this feature.)

ESC ^ Transmit Current Line
Transmits the line that the cursor is currently located on. (The computer requires a special routine to use this feature.)

ESC _ Transmit Character At Cursor

Transmits the character that the cursor is presently located at. (The computer requires a special routine to use this feature.)

ESC i 0 Zenith Identify Terminal Type Interrogates the terminal for identification. A Z-100 family computer will respond with:

ESC iENn Where Nn equals:
1 = one bank of VRAM
$3=$ three banks of VRAM
A $=32 \mathrm{k}$ byte VRAM parts
$B=64 k$ byte VRAM parts

ESCAPE CODES DEFINED

ESC m Fore Back

Specifies colors for foreground and background of display, where fore and back equal:

$$
\begin{aligned}
& 0=\text { black } \\
& 1=\text { blue } \\
& 2=\text { red } \\
& 3=\text { magenta } \\
& 4=\text { green } \\
& 5=\text { cyan } \\
& 6=\text { yellow } \\
& 7=\text { white }
\end{aligned}
$$

ESC \{ Keyboard Enable

Enables the keyboard after it was inhibited by an Keyboard Disabled command.

ESC \} Keyboard Disable
Inhibits the output of the keyboard.

ESC v Wrap-Around At End Of Line

The 81st character on a line is automatically placed in the first character position on the next line. The page scrolls up if necessary.

ESC w Discard At End Of Line

After the 80th character in a line, the characters overprint. Therefore, only the last character received will be displayed in position 80.

ESCAPE CODES DEFINED

ESC J Function Key F0
Transmits a unique escape code to perform a user-defined function. The computer will not respond to this code if it is received.

ESC S Function Key F1
Same as above.

ESC T Function Key F2
Same as above.
ESC U Function Key F3
Same as above.

ESC V Function Key F4
Same as above.
ESC W Function Key F5
Same as above.

ESC P Function Key F6
Same as above.
ESC Q Function Key F7
Same as above.
ESC R Function Key F8
Same as above.

ESC OI Function Key F9
Same as above.
ESC 0J Function Key F10
Same as above.
ESC OK Function Key F11
Same as above.

ESC OL Function Key F12
Same as above.

KEY CODE CHART

After a key is detected as being down, the keyboard encoder places a byte on its data bus which represents only the depressed key. The codes for some of the keys depend on the state of the "modifier" keys - SHIFT (right or left), CTRL (control), and CAPS LOCK. Some keys are not affected by any of the modifiers, such as the DELETE key. Its code (7F) is always the same, such as the DELETE key. It's code (7F) is always the same, regardless of the modifier key's positions. Other keys are affected by all of the modifiers, such as the "A" key.

In the following table, an "NC" under a modifier indicates that no code is generated for that key.

The CAPS LOCK column has a Y (yes) or N (no) to indicate if the CAPS LOCK key affects the output code or not. The CAPS LOCK key functions as a SHIFT key, but only for the alphabet keys.

Each key has a code for when it is pushed down. However, in its event-driven mode (key up/down mode), each key also has a different code for when it starts back up again. These are listed as Down Codes and Up Codes. (The "up code" equals the "down code" plus 80 hex.)

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
1 0	30	29	30	29	N	$5 B$	DB
1 1	31	21	31	21	N	57	D 7
@	32	40	32	00	N	56	D 6
$\#$ 3	33	23	33	23	N	55	D 5
$\$$ 4	34	24	34	24	N	54	D 4

KEY CODE CHART

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
$\begin{gathered} \% \\ 5 \end{gathered}$	35	25	35	25	N	53	D3
6	36	5E	36	1E	N	52	D2
$\begin{aligned} & \& \\ & 7 \end{aligned}$	37	26	37	26	N	51	D1
8	38	2A	38	2A	N	50	D0
$\begin{aligned} & 1 \\ & 9 \end{aligned}$	39	28	39	28	N	5A	DA
A	61	41	01	01	Y	07	87
B	62	42	02	02	Y	13	93
C	63	43	03	03	Y	15	95
D	64	44	04	04	Y	05	85
E	65	45	05	05	Y	OD	8D
F	66	46	06	06	Y	04	84
G	67	47	07	07	Y	03	83
H	68	48	08	08	Y	02	82
1	69	49	09	09	Y	08	88
J	6A	4A	OA	OA	Y	01	81
K	6B	4B	OB	OB	Y	00	80
L	6C	4C	OC	OC	Y	10	90

KEY CODE CHART

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
M	6D	4D	OD	OD	Y	11	91
N	6 E	4E	OE	OE	Y	12	92
0	6F	4F	OF	OF	Y	19	99
P	70	50	10	10	Y	1A	9A
Q	71	51	11	11	Y	OF	8F
R	72	52	12	12	Y	OC	8 C
S	73	53	13	13	Y	06	86
T	74	54	14	14	Y	OB	8B
U	75	55	15	15	Y	09	89
V	76	56	16	16	Y	14	94
W	77	57	17	17	Y	OE	8E
X	78	58	18	18	Y	16	96
Y	79	59	19	19	Y	OA	8A
Z	7A	5A	1A	1A	Y	17	97
BACK SPACE	08	08	08	08	N	5F	DF
TAB	09	09	09	09	N	4E	CE
LINE FEED	OA	OA	OA	OA	N	44	C4
RETURN	OD	OD	OD	0D	N	4C	CC

KEY CODE CHART

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	$\begin{aligned} & \text { Up } \\ & \text { Code } \end{aligned}$
ESC	1B	1B	1B	1B	N	4F	CF
SPACE	20	20	20	20	N	45	C5
,	27	22	27	22	N	48	C8
$<$	2 C	3 C	2 C	3C	N	4D	CD
-	2D	5F	2D	1F	N	5C	DC
>	2E	3E	2E	3E	N	4A	CA
?	2F	3F	$2 F$	3F	N	4B	CB
	3B	3A	3B	3A	N	49	C9
+ $=$	3D	2B	3D	2B	N	5D	DD
[5B	7B	1B	7B	N	59	D9
1	5C	7 C	1 C	7 C	N	43	C3
\}	5D	7D	1D	7 D	N	58	D8
-	60	7E	60	7E	N	5E	DE

Page 10.56

KEY CODE CHART

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	$\begin{gathered} \text { Up } \\ \text { Code } \end{gathered}$
DELETE	7F	7F	7F	7F	N	42	C2
ENTER	8D	CD	8D	CD	N	38	B8
HELP	95	D5	95	C5	N	46	C6
F0	96	D6	96	D6	N	27	A7
F1	97	D7	97	D7	N	26	A6
F2	98	D8	98	D8	N	25	A5
F3	99	D9	99	D9	N	24	A4
F4	9A	DA	9A	DA	N	23	A3
F5	9B	DB	9B	DB	N	22	A2
F6	9 C	DC	9 C	DC	N	21	A1
F7	9 D	DD	9D	DD	N	20	A0
F8	9E	DE	9E	DE	N	29	A9
F9	9F	DF	9F	DF	N	2A	AA
F10	AO	E0	AO	E0	N	2B	AB
F11	A1	E1	A1	E1	N	2C	AC
F12	A2	E2	A2	E2	N	2D	AD

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
$\begin{aligned} & \text { D CHR } \\ & \text { I CHR } \end{aligned}$	A3	E3	A3	E3	N	2 E	AE
D LINE I LINE	A4	E4	A4	E4	N	2 F	AF
(up arrow)	A5	E5	A5	E5	N	3B	BB
(down arrow)	A6	E6	A6	E6	N	3A	BA
(right arrow)	A7	E7	A7	E7	N	33	B3
(left arrow)	A8	E8	A8	E8	N	3F	BF
HOME	A9	E9	A9	E9	N	37	B7
BREAK	AA	EA	AA	EA	N	47	C7
- (keypad)	AD	ED	AD	ED	N	39	B9
(keypad)	AE	EE	AE	EE	N	40	C0
0 (keypad)	B0	F0	B0	F0	N	41	C1
1 (keypad)	B1	F1	B1	F1	N	34	B4
2 (keypad)	B2	F2	B2	F2	N	3 C	BC
3 (keypad)	B3	F3	B3	F3	N	30	B0
4 (keypad)	B4	F4	B4	F4	N	35	B5
5 (keypad)	B5	F5	B5	F5	N	3D	BD
6 (keypad)	B6	F6	B6	F6	N	31	B1

KEY CODE CHART

Key	Not Shifted	Shifted	Control	Control Shift	Caps Lock (Yes/No)	Down Code	Up Code
7 (keypad)	B7	F7	B7	F7	N	36	B6
8 (keypad)	B8	F8	B8	F8	N	$3 E$	BE
9 (keypad)	B9	F9	B9	F9	N	32	B2
FAST REPEAT	NC	NC	NC	NC	N	60	E0
CAPS LOCK	NC	NC	NC	NC	N	61	E1
SHIFT (right)	NC	NC	NC	NC	N	62	E2
CTRL	NC	NC	NC	NC	N	63	E3
SHIFT (left)	NC	NC	NC	NC	N	64	E4
RESET	NC	NC	(NC) Resets	(NC) Resets	N	NC	NC
		Computer	Computer				

Keypad Codes (key expansion enabled)

$\mathrm{Key}(\mathrm{s})$ Pressed:	MODES			
	Normal Unshifted	Normal Shifted	Alternate Unshitted	Alternate Shifted
ENTER	ENTER	ENTER	ESC?M	ENTER
			ESC? ${ }^{\text {n }}$.
-	-	-	ESC?m	-
0	0	0	ESC?p	0
1	1	ESCL	ESC?q	ESCL
2	2	ESCB	ESC? ${ }^{\text {r }}$	ESCB
3	3	ESCM	ESC?s	ESCM
4	4	ESCD	ESC? ${ }^{\text {t }}$	ESCD
5	5	ESCH	ESC? ${ }^{\text {u }}$	ESCH
6	6	ESCC	ESC?v	ESCC
7	7	* ESC @/ESCO	ESC ? w	* ESC@/ESCO
8	8	ESCA	ESC? x	ESCA
9	9	ESCN	ESC?y	ESCN
SHIFTENTER	ENTER	ENTER	ENTER	ESC?M
SHIFT.	.	.	.	ESC?n
SHIFT-	-	-	-	ESC?m
SHIFTO	0	0	0	ESC?p
SHIF1	ESCL	1	ESCL	ESC?q
SHIFT2	ESCB	2	ESCB	ESC? ${ }^{\text {r }}$
SHIFT 3	ESCM	3	ESCM	ESC?s
SHIFT 4	ESCD	4	ESCD	ESC?
SHIFT 5	ESCH	5	ESCH	ESC? ${ }^{\text {d }}$
SHIFT 6	ESCC	6	ESCC	ESC?v
SHIFT 7	* ESC@/ESCO	7	* ESC @/ESCO	ESC? w
SHIFT 8	ESCA	8	ESCA	ESC? ${ }^{\text {x }}$
SHIFT9	ESCN	9	ESCN	ESC?y

FUNCTION KEY CODE CHART

Function Key Codes (key expansion enabled)

Key	Unshifted	Shifted
F0	ESCJ	ESCE
F1	ESCS	ESC 1 A
F2	ESCT	ESC 1 B
F3	ESCU	ESC 1 C
F4	ESCV	ESC 1 D
F5	ESCW	ESC 1 E
F6	ESCP	ESC 1 F
F7	ESCQ	ESC 1 G
F8	ESCR	ESC 1 H
F9	ESCOI	ESC 11
F10	ESCOJ	ESC 1 J
F11	ESCOK	ESC 1 K
F12	ESC0L	ESC 1 L
ICHR	*ESC@/ESC0	
D CHR	-	ESCN
DELLINE	-	ESCM
INS LINE	ESCL	-
\uparrow	ESC A	ESCA
\downarrow	ESCB	ESCB
\rightarrow	ESCC	ESCC
\leftarrow	ESCD	ESCD
HOME	ESCH	ESCH
BREAK	ESC ${ }^{\text {\| }}$	ESC ${ }^{\text {\| }}$
HELP	ESC -	ESC -

* Toggles between codes

Index

A

Address/Data circuits, 2.65
Address latches, 2.66
Data latches, 2.67
Extended addressing, 2.69
General, 2.65
Address Multiplexer, 2.50
ASCII chart, 10.30

B

BDOTA, 4.55
Block Diagrams,
CPU block diagram, 2.19
Interrupt block diagram, 2.21
I/O block diagram, 2.22
Keyboard block diagram, 2.22
Memory block diagram, 2.20
Black Level Control, 4.4
Brite control, 5.5

C

Cabinet, 9.1
Cabinet top, 1.5
Cables, 9.1
Cascode amplifier, 5.3

Chassis, 9.1
Chassis, cabinet, \& cables, 9.1
Cable location/description, 9.12
Circuit boards, \& hardware, 9.17
Replacement Parts List, 9.2
All-In-One, 9.2
Low profile, 9.8
Circuit descriptions,
Main board, 2.23
Video deflection board, 5.2
Video logic board, 4.48
Color display, 4.6
Color output, 4.55
Composite, 4.56
Configuration, 10.48
Contrast control, 4.4
CPU read, 4.62
CPU write, 4.62
CRT-C, 4.8
CRT-C read, 4.63
CRT-C registered, 4.40
Cursor functions, 10.42

D

Differential amplifier, 5.2
DIP switch port (FF), 2.8
DIP switch S-101, 2.3
DIP switch select circuits, 2.40
DS1 floppy disk controller board, 6.5
DS1 floppy disk controller board, 6.8

Disassembly, 1.5
Display/Front panel assembly, 1.5
Keyboard, 1.6
Keyboard shell, 1.6
Power supply, 1.7
S-100 card cage, 1.7
Video logic circuit board, 1.8
Main board, 1.9
Disk controller board, 1.4
Drive interface connectors, 6.13
Dynamic memory, 2.48
Address multiplexer, 2.50
Dynamic RAM, 2.49
General, 2.48
Memory circuit waveforms, 2.53
Memory map decoder, 2.51

E

E-clock, 2.81
Editing, 10.45
Encoder output codes, 3.12
Erasing, 10.45
Escape codes, 10.38
Escape codes defined, 10.42
Event-driven mode, 3.2
Exploded view - All-In-One, 9.3
Exploded view - Low profile, 9.9
Extended addressing, 2.68

F

Flash, 4.24, 4.58
Floppy disk controller card, 1.5

Floppy disk controller, 6.1
Address lines, 6.24
Assembly language code, 6.16
Bus interface, 6.21
Calibration, 6.35
Card clock speed, 6.3
Circuit description, 6.23
Control latch, 6.22
Control latch bit definitions, 6.9
Control lines, 6.24
Controller, 6.21
Data in, 6.23
Data out, 6.23
Data precompensation, 6.30
Data read, 6.28
Data separation, 6.21, 6.30
Data separator calibration, 6.37
Data write, 6.28
Description, 6.2
Drive interface, 6.21, 6.30
Drive interface connectors, 6.13
DS1, 6.5, 6.8
Interconnect pins, 6.50
Interleaving, 6.12
l/O port assignments, 6.7
Port bit definitions, 6.8
Port address selection, 6.5
Power up, 6.24
Precompensation, 6.21
Precompensation options, 6.11
RDY delay, 6.29
Read status latch, 6.26
Read status register (1797), 6.27
Ready line, 6.24
Replacement Parts List, 6.38
$\mathrm{S}-100$ bus connector, 6.15

S-100 bus interface, 6.23
Semiconductor identification, 6.39
Signal definitions, 6.50
Status port, 6.21
Status port bit definitions, 6.10
Theory of operation, 6.21
Track formats, 6.11
Troubleshooting, 6.32
Vector interrupt lines, 6.4, 6.24
Write command register (1797), 6.28
Write control latch, 6.27
X-Ray View, 6.49
Floppy drives 5 1/4", 7.1
Cable connections, 7.5
Description, 7.2
Diskette handling, 7.6
Diskette loading, 7.6
Operation, 7.6
Programming, 7.3
Programming plugs, 7.4
Terminator IC's, 7.4
Write-protect, 7.7
Flyback transformer, 5.2

G

GDOTA, 4.55

H

Handshake, 2.84, 2.87
High address latch (FD), 2.10
Horizontal sync, 5.2

I

Initialization sequence, 10.14
Interconnect pin definitions,
Main board, 2.137
Keyboard, 2.139
Light pen, 2.139
Parallel port, 2.138
RS-232, 2.137
S-100 bus, 2.137
Video logic board, 2.141
Video logic board, 4.109
Power Supply connectors, 2.144
Interleaving, 6.12
Interrupt 8259A (FO-F3), 2.15
Interrupt circuitry, 2.69
General, 2.69
Interrupt routine, 2.74
Maskable interrupt sequence, 2.70
Nonmaskable interrupt sequence, 2.73
I/O circuitry, 2.82
I/O port decoder, 2.90
General, 2.82
Parallel port, 2.86
Printer port, 2.87
Light pen port, 2.88
Serial port A, 2.82
Serial port B, 2.85
Video interrupt port, 2.89
IO.SYS, 10.18

J

Jumpers - floppy disk controller, 6.3, 6.4
Jumpers - main board, 2.4
Jumpers - video logic board, 4.3

K

Keyboard, 2.75
Encoder, 3.1
Encoder output codes, 3.12
Functions, 3.2
General, 2.75
Layout, 3.19
Matrix, 3.11
8041 pin-out, 2.75
Theory of Operation, 3.8
Troubleshooting, 3.10
Key code chart, 10.52

L
Light pen, 4.7, 10.13
Light pen port, 2.17, 2.88
Loader, 10.13

M

Main board, 1.4
Address/Data circuits, 2.65
Block diagram - CPU, 2.19
Block diagram - interrupt, 2.21
Block diagram - I/O, 2.22
Block diagram - keyboard, 2.22
Block diagram - memory, 2.20
Circuit Description, 2.23
Description, 2.2
DIP switch S101, 2.3
DIP switch select circuits, 2.40
E-clock, 2.78
I/O circuitry, 2.23, 2.83
Interconnect pin definitions, 2.137
Interrupt circuitry, 2.69
Interrupts 8259A, 2.21

Jumpers, 2.4
Keyboard, 2.75
Keyboard encoder, 2.23, 3.1
Auto repeat, 3.3
Command summary, 3.6
Event-driven mode, 3.3
FIFO, 3.3
I/O protocol, 3.4
Key click, 3.3
Power configuration, 3.3
Programming specification, 3.4
Map selection, 2.61
Memory, 2.20
Memory control latch, 2.48
Memory control latch port (FC), 2.11
Memory map, 4.59
Microprocessor 8085, 2.23
General, 2.23
Pin-out description, 2.23
Timing, 2.26
Microprocessor 8088, 2.28
General, 2.28
Pin-out description, 2.29
Timing, 2.32
Microprocessor status code, 2.43
Parity circuits, 2.59
Processor swap port, 2.33
Auto swap, 2.37
General, 2.33
Swap interrupt, 2.38
Swap timing, 2.34
Refresh circuits, 2.55
Reset circuits, 2.39
Keyboard reset, 2.40
Power-up reset, 2.39
Replacement Parts List, 2.92
Semiconductor Identification, 295
S-100 bus control output circuits, 2.45
S-100 bus status, 2.41
System monitor ROM, 2.63
Theory of Operation, 2.18

Timer, 2.78
Wait timing, 2.44
X-Ray Views, 2.137
Master 8259A, 2.15
Memory circuit waveforms, 2.53
Memory mapping, 10.6
Modes of operation, 10.46
Monochrome, 4.7, 4.22
Monochrome output, 4.55

P

Parallel port, 10.13
Parallel printer port, 2.17
Parity, 2.12, 10.7
Parity circuits - main board, 2.59
Phantom line, 2.52, 2.64, 4.23
Pixel, 4.5, 4.40
Polling, 3.5
Port addresses, 2.6, 10.11
Port D8, 4.32
Power supply, 5.3
Power supply, 8.1
Specifications, 8.3
Processor swap port (FE), 2.9
Programming data, 10.1
General information, 10.3
8085, 10.3
8088, 10.3
Floppy disk controller, 6.7
Interrupt structure, 10.4
Memory mapping, 10.6
Parity, 10.7
Processor swapping, 10.5
RAM, 10.3
ROM, 10.3
Timer, 10.8

Programming Information, 2.6
DIP switch port (FF), 2.8
High address latch (FD), 2.10
Interrupt 8259A (F0-F3), 2.15
Light pen port, 2.17
Memory control latch port (FC), 2.11
Parallel port 68A21 (E0-E3), 2.16
Port addresses, 2.6
Port bit definitions, 2.7
Printer parallel port, 2.17
Processor swap port (FE), 2.9
Timer 8253 bit definitions, 2.14
Timer 8253 status port (FB), 2.13

R

RDOTA, 4.55
Recalibration - video deflection board, 5.5
Refresh circuits, - main board, 2.55
Refresh clock, 2.55
Relative memory locations, 4.51
Replacement Parts List,
Floppy disk controller board, 6.38
Main board, 2.92
Video deflection board, 5.8
Video logic board, 4.70

S

Semiconductor Identification
Floppy disk controller board, 6.39
Main board, 2.95
Video logic board, 4.72
S-100 bus status circuits, 2.41
S-100 control output circuits, 2.45

Slave 8259A, 2.15
Specifications,
Power supply, 8.3
System monitor ROM, 2.63
Addressing, 2.63
Phantom line, 2.64

T

Theory of Operation — main board, 2.18
Timer, 2.78
Timer status port (FB), 2.13
Troubleshooting,
Floppy disk controller board, 6.32
Video logic board, 4.69
Video deflection board, 5.4

U

UPI - 8041A, 2.75

v

Vertical control register, 4.30
Vertical size, 5.6
Video deflection board, 5.1
Circuit Description, 5.2
High voltage power supply, 5.3
Horizontal circuits, 5.2
Power supply, 5.3
Vertical circuits, 5.2
Video amplifier, 5.3
Recalibration, 5.5
Replacement parts list, 5.8
Troubleshooting, 5.4
X-Ray Views, 5.11

Video logic board, 1.4, 4.1
Black level control, 4.4
Circuit Description, 4.48
CPU-video communications, 4.57
Light pen circuits, 4.68
Relative memory locations, 4.51
Timing, 4.65
Video arbitration, 4.66
Video output, 4.55
Video processing circuits, 4.48
Replacement Parts List, 4.70
Semiconductor identification, 4.72
Troubleshooting, 4.69
X-Ray Views, 4.109
Color display, 4.6
Contrast control, 4.4
Conversion from character based
to pixel based display, 4.11
CRT-C, 4.12
Description, 4.2
Interconnect pin definitions, 4.109
Jumpers, 4.3
Light pen, 4.7
Light pen, 4.24
Software considerations, 4.26
Matrix scheme, 4.5
Programming data, 4.29
Clearing the screen, 4.45
CRT-C register, 4.39
Port addresses, 4.29
Video control register, 4.30
Read data buffers, 4.61
Theory of Operation, 4.5
Video RAM mapping module, 4.15
Video RAM, 4.22
Video system, 4.8

w

Wait state, 2.44
Wait control, 5.6
Width control, 2.44

X
X-Ray views,
Floppy disk controller board, 6.49
Main board, 2.136
Video deflection board, 5.11
Video logic board, 4.106

Z

Z-DOS drive mapping, 10.21
Z-DOS initialization sequence, 10.14

[^0]: *Copyright, Digital Research.

[^1]: * The ET-100 cannot house any S-100 cards. Therefore, future optional cards may use these addresses.

